Matches in SemOpenAlex for { <https://semopenalex.org/work/W2733093374> ?p ?o ?g. }
- W2733093374 endingPage "168781401770414" @default.
- W2733093374 startingPage "168781401770414" @default.
- W2733093374 abstract "Rolling element bearings and gears are the most common machine elements. As they are extensively used in rotating machinery, their health conditions are crucial to the safe operation. The signals measured from rotating machines are usually affected by the working conditions and background noises. Thus, identifying faults from the mixed signals is a challenging and important task. Deep learning is initially developed for image recognition. Recently, it has attracted increasing attention in machinery fault diagnosis research. However, the generalization ability of the default classifier of it is not very satisfying. Thus, combining the feature learning ability of deep learning and the existing classifiers with satisfactory generalization ability is necessary. In this article, a hybrid technique based on convolutional neural network and support vector regression is proposed. The former part is used to promote feature extraction capability, and the latter part is used for multi-class classification. The efficiency of the proposed scheme is validated using the real acoustic signals measured from locomotive bearings and vibration signals measured from the automobile transmission gearbox. Results confirm that the method proposed is able to capture fault characteristics from the raw data, and both bearing faults and gear faults can be detected successfully." @default.
- W2733093374 created "2017-07-14" @default.
- W2733093374 creator A5008653906 @default.
- W2733093374 creator A5026187066 @default.
- W2733093374 creator A5043608454 @default.
- W2733093374 creator A5054789987 @default.
- W2733093374 creator A5090356888 @default.
- W2733093374 creator A5091072755 @default.
- W2733093374 date "2017-06-01" @default.
- W2733093374 modified "2023-10-16" @default.
- W2733093374 title "A hybrid technique based on convolutional neural network and support vector regression for intelligent diagnosis of rotating machinery" @default.
- W2733093374 cites W1576462183 @default.
- W2733093374 cites W1971681701 @default.
- W2733093374 cites W1975363652 @default.
- W2733093374 cites W1977742600 @default.
- W2733093374 cites W1983364832 @default.
- W2733093374 cites W1991723619 @default.
- W2733093374 cites W2002425256 @default.
- W2733093374 cites W2005029871 @default.
- W2733093374 cites W2013124207 @default.
- W2733093374 cites W2026430219 @default.
- W2733093374 cites W2033304639 @default.
- W2733093374 cites W2033310064 @default.
- W2733093374 cites W2060304859 @default.
- W2733093374 cites W2063526924 @default.
- W2733093374 cites W2067407532 @default.
- W2733093374 cites W2067748538 @default.
- W2733093374 cites W2070884781 @default.
- W2733093374 cites W2081102568 @default.
- W2733093374 cites W2100495367 @default.
- W2733093374 cites W2124191995 @default.
- W2733093374 cites W2142246849 @default.
- W2733093374 cites W2184192902 @default.
- W2733093374 cites W2219903032 @default.
- W2733093374 cites W2261689926 @default.
- W2733093374 cites W2287029277 @default.
- W2733093374 cites W2301001563 @default.
- W2733093374 cites W2323804093 @default.
- W2733093374 cites W2324044936 @default.
- W2733093374 cites W2340896621 @default.
- W2733093374 cites W2344447050 @default.
- W2733093374 cites W2485614840 @default.
- W2733093374 cites W2522921622 @default.
- W2733093374 cites W2566079294 @default.
- W2733093374 cites W2919115771 @default.
- W2733093374 cites W930082539 @default.
- W2733093374 doi "https://doi.org/10.1177/1687814017704146" @default.
- W2733093374 hasPublicationYear "2017" @default.
- W2733093374 type Work @default.
- W2733093374 sameAs 2733093374 @default.
- W2733093374 citedByCount "35" @default.
- W2733093374 countsByYear W27330933742018 @default.
- W2733093374 countsByYear W27330933742019 @default.
- W2733093374 countsByYear W27330933742020 @default.
- W2733093374 countsByYear W27330933742021 @default.
- W2733093374 countsByYear W27330933742022 @default.
- W2733093374 countsByYear W27330933742023 @default.
- W2733093374 crossrefType "journal-article" @default.
- W2733093374 hasAuthorship W2733093374A5008653906 @default.
- W2733093374 hasAuthorship W2733093374A5026187066 @default.
- W2733093374 hasAuthorship W2733093374A5043608454 @default.
- W2733093374 hasAuthorship W2733093374A5054789987 @default.
- W2733093374 hasAuthorship W2733093374A5090356888 @default.
- W2733093374 hasAuthorship W2733093374A5091072755 @default.
- W2733093374 hasBestOaLocation W27330933741 @default.
- W2733093374 hasConcept C119857082 @default.
- W2733093374 hasConcept C121332964 @default.
- W2733093374 hasConcept C12267149 @default.
- W2733093374 hasConcept C127313418 @default.
- W2733093374 hasConcept C127413603 @default.
- W2733093374 hasConcept C134306372 @default.
- W2733093374 hasConcept C153180895 @default.
- W2733093374 hasConcept C154945302 @default.
- W2733093374 hasConcept C165205528 @default.
- W2733093374 hasConcept C175551986 @default.
- W2733093374 hasConcept C177148314 @default.
- W2733093374 hasConcept C198394728 @default.
- W2733093374 hasConcept C199978012 @default.
- W2733093374 hasConcept C2780155820 @default.
- W2733093374 hasConcept C33923547 @default.
- W2733093374 hasConcept C41008148 @default.
- W2733093374 hasConcept C50644808 @default.
- W2733093374 hasConcept C52622490 @default.
- W2733093374 hasConcept C62520636 @default.
- W2733093374 hasConcept C81363708 @default.
- W2733093374 hasConcept C95623464 @default.
- W2733093374 hasConceptScore W2733093374C119857082 @default.
- W2733093374 hasConceptScore W2733093374C121332964 @default.
- W2733093374 hasConceptScore W2733093374C12267149 @default.
- W2733093374 hasConceptScore W2733093374C127313418 @default.
- W2733093374 hasConceptScore W2733093374C127413603 @default.
- W2733093374 hasConceptScore W2733093374C134306372 @default.
- W2733093374 hasConceptScore W2733093374C153180895 @default.
- W2733093374 hasConceptScore W2733093374C154945302 @default.
- W2733093374 hasConceptScore W2733093374C165205528 @default.
- W2733093374 hasConceptScore W2733093374C175551986 @default.
- W2733093374 hasConceptScore W2733093374C177148314 @default.
- W2733093374 hasConceptScore W2733093374C198394728 @default.