Matches in SemOpenAlex for { <https://semopenalex.org/work/W2765503488> ?p ?o ?g. }
- W2765503488 endingPage "053009" @default.
- W2765503488 startingPage "053009" @default.
- W2765503488 abstract "We consider a metrology scenario in which qubit-like probes are used to sense an external field that affects their energy splitting in a linear fashion. Following the frequency estimation approach in which one optimizes the state and sensing time of the probes to maximize the sensitivity, we provide a systematic study of the attainable precision under the impact of noise originating from independent bosonic baths. Specifically, we invoke an explicit microscopic derivation of the probe dynamics using the spin-boson model with weak coupling of arbitrary geometry. We clarify how the secular approximation leads to a phase-covariant (PC) dynamics, where the noise terms commute with the field Hamiltonian, while the inclusion of non-secular contributions breaks the PC. Moreover, unless one restricts to a particular (i.e., Ohmic) spectral density of the bath modes, the noise terms may contain relevant information about the frequency to be estimated. Thus, by considering general evolutions of a single probe, we study regimes in which these two effects have a non-negligible impact on the achievable precision. We then consider baths of Ohmic spectral density yet fully accounting for the lack of PC, in order to characterize the ultimate attainable scaling of precision when N probes are used in parallel. Crucially, we show that beyond the semigroup (Lindbladian) regime the Zeno limit imposing the 1/N3/2 scaling of the mean squared error, recently derived assuming PC, generalises to any dynamics of the probes, unless the latter are coupled to the baths in the direction perfectly transversal to the frequency encoding—when a novel scaling of 1/N7/4 arises. As our microscopic approach covers all classes of dissipative dynamics, from semigroup to non-Markovian ones (each of them potentially non-phase-covariant), it provides an exhaustive picture, in which all the different asymptotic scalings of precision naturally emerge." @default.
- W2765503488 created "2017-11-10" @default.
- W2765503488 creator A5026612054 @default.
- W2765503488 creator A5041968174 @default.
- W2765503488 creator A5049800314 @default.
- W2765503488 creator A5078107712 @default.
- W2765503488 creator A5079335003 @default.
- W2765503488 date "2018-05-03" @default.
- W2765503488 modified "2023-10-15" @default.
- W2765503488 title "Fundamental limits to frequency estimation: a comprehensive microscopic perspective" @default.
- W2765503488 cites W1526894386 @default.
- W2765503488 cites W1965796555 @default.
- W2765503488 cites W1981935016 @default.
- W2765503488 cites W1983447989 @default.
- W2765503488 cites W1983511478 @default.
- W2765503488 cites W1987319859 @default.
- W2765503488 cites W1991524524 @default.
- W2765503488 cites W1992468296 @default.
- W2765503488 cites W1993488859 @default.
- W2765503488 cites W1997082258 @default.
- W2765503488 cites W1999664967 @default.
- W2765503488 cites W2001335770 @default.
- W2765503488 cites W2005164286 @default.
- W2765503488 cites W2007948277 @default.
- W2765503488 cites W2013879218 @default.
- W2765503488 cites W2015683881 @default.
- W2765503488 cites W2015876000 @default.
- W2765503488 cites W2016084623 @default.
- W2765503488 cites W2026522229 @default.
- W2765503488 cites W2027470901 @default.
- W2765503488 cites W2032839191 @default.
- W2765503488 cites W2034616707 @default.
- W2765503488 cites W2038046831 @default.
- W2765503488 cites W2038674186 @default.
- W2765503488 cites W2038710373 @default.
- W2765503488 cites W2044421213 @default.
- W2765503488 cites W2048158626 @default.
- W2765503488 cites W2048179370 @default.
- W2765503488 cites W2051618454 @default.
- W2765503488 cites W2057357428 @default.
- W2765503488 cites W2059235845 @default.
- W2765503488 cites W2059343391 @default.
- W2765503488 cites W2061512838 @default.
- W2765503488 cites W2067380753 @default.
- W2765503488 cites W2069963237 @default.
- W2765503488 cites W2071635717 @default.
- W2765503488 cites W2074495294 @default.
- W2765503488 cites W2078635972 @default.
- W2765503488 cites W2078824939 @default.
- W2765503488 cites W2082084245 @default.
- W2765503488 cites W2083178891 @default.
- W2765503488 cites W2083423624 @default.
- W2765503488 cites W2084865781 @default.
- W2765503488 cites W2087654101 @default.
- W2765503488 cites W2095433238 @default.
- W2765503488 cites W2096109311 @default.
- W2765503488 cites W2097876164 @default.
- W2765503488 cites W2109809398 @default.
- W2765503488 cites W2111525754 @default.
- W2765503488 cites W2116102644 @default.
- W2765503488 cites W2119046658 @default.
- W2765503488 cites W2126916397 @default.
- W2765503488 cites W2131245179 @default.
- W2765503488 cites W2142453065 @default.
- W2765503488 cites W2154434103 @default.
- W2765503488 cites W2168597591 @default.
- W2765503488 cites W2272790570 @default.
- W2765503488 cites W2275250595 @default.
- W2765503488 cites W2286527937 @default.
- W2765503488 cites W2301999234 @default.
- W2765503488 cites W2313684696 @default.
- W2765503488 cites W2344400751 @default.
- W2765503488 cites W2510873510 @default.
- W2765503488 cites W2520473871 @default.
- W2765503488 cites W2537014938 @default.
- W2765503488 cites W2580685138 @default.
- W2765503488 cites W2597858077 @default.
- W2765503488 cites W2766839228 @default.
- W2765503488 cites W2788918728 @default.
- W2765503488 cites W2962843923 @default.
- W2765503488 cites W2963783471 @default.
- W2765503488 cites W2990961515 @default.
- W2765503488 cites W3037089521 @default.
- W2765503488 cites W3037447387 @default.
- W2765503488 cites W3098972256 @default.
- W2765503488 cites W3100032124 @default.
- W2765503488 cites W3100140276 @default.
- W2765503488 cites W3102501172 @default.
- W2765503488 cites W3102621600 @default.
- W2765503488 cites W3104157705 @default.
- W2765503488 cites W3104643420 @default.
- W2765503488 cites W3105191062 @default.
- W2765503488 cites W3105476306 @default.
- W2765503488 cites W3105676084 @default.
- W2765503488 cites W3110471435 @default.
- W2765503488 cites W3123777847 @default.
- W2765503488 cites W3145544159 @default.
- W2765503488 cites W33170579 @default.