Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767511704> ?p ?o ?g. }
- W2767511704 endingPage "2339" @default.
- W2767511704 startingPage "2335" @default.
- W2767511704 abstract "Hyperspectral restoration is a preprocessing step for hyperspectral imagery. In this letter, we propose a parameter-free method for the restoration of hyperspectral images (HSIs) called HyRes. The restoration method is based on a sparse low-rank model that uses the ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> penalized least squares for estimating the unknown signal. The Stein's unbiased risk estimator is exploited to select all the parameters of the model yielding a fully automatic (parameter free) technique. Experimental results confirm that HyRes outperforms the state-of-the-art techniques in terms of signal-to-noise ratio, structural similarity index, and spectral angle distance for a simulated data set and in terms of noise-level estimation for the real data sets used in this letter. In the experiments, it was noted that HyRes is computationally less expensive compared with competitive techniques. Therefore, HyRes can be used as a reliable automatic preprocessing step for further analysis of HSIs." @default.
- W2767511704 created "2017-11-17" @default.
- W2767511704 creator A5042657950 @default.
- W2767511704 creator A5069292094 @default.
- W2767511704 creator A5074919292 @default.
- W2767511704 date "2017-12-01" @default.
- W2767511704 modified "2023-10-10" @default.
- W2767511704 title "Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling" @default.
- W2767511704 cites W1944540851 @default.
- W2767511704 cites W1963826206 @default.
- W2767511704 cites W1969760160 @default.
- W2767511704 cites W1974933922 @default.
- W2767511704 cites W1974961764 @default.
- W2767511704 cites W1985242206 @default.
- W2767511704 cites W1991003630 @default.
- W2767511704 cites W1994040806 @default.
- W2767511704 cites W2002177959 @default.
- W2767511704 cites W2017679581 @default.
- W2767511704 cites W2018282388 @default.
- W2767511704 cites W2027898483 @default.
- W2767511704 cites W2039596145 @default.
- W2767511704 cites W2053419820 @default.
- W2767511704 cites W2070424424 @default.
- W2767511704 cites W2074181966 @default.
- W2767511704 cites W2074877926 @default.
- W2767511704 cites W2093429889 @default.
- W2767511704 cites W2103559027 @default.
- W2767511704 cites W2107459025 @default.
- W2767511704 cites W2127077132 @default.
- W2767511704 cites W2129891925 @default.
- W2767511704 cites W2133665775 @default.
- W2767511704 cites W2155124307 @default.
- W2767511704 cites W2171520281 @default.
- W2767511704 cites W2336406062 @default.
- W2767511704 cites W2480706550 @default.
- W2767511704 cites W2496621835 @default.
- W2767511704 cites W2617982036 @default.
- W2767511704 doi "https://doi.org/10.1109/lgrs.2017.2764059" @default.
- W2767511704 hasPublicationYear "2017" @default.
- W2767511704 type Work @default.
- W2767511704 sameAs 2767511704 @default.
- W2767511704 citedByCount "51" @default.
- W2767511704 countsByYear W27675117042018 @default.
- W2767511704 countsByYear W27675117042019 @default.
- W2767511704 countsByYear W27675117042020 @default.
- W2767511704 countsByYear W27675117042021 @default.
- W2767511704 countsByYear W27675117042022 @default.
- W2767511704 countsByYear W27675117042023 @default.
- W2767511704 crossrefType "journal-article" @default.
- W2767511704 hasAuthorship W2767511704A5042657950 @default.
- W2767511704 hasAuthorship W2767511704A5069292094 @default.
- W2767511704 hasAuthorship W2767511704A5074919292 @default.
- W2767511704 hasConcept C103278499 @default.
- W2767511704 hasConcept C105795698 @default.
- W2767511704 hasConcept C106430172 @default.
- W2767511704 hasConcept C114614502 @default.
- W2767511704 hasConcept C115961682 @default.
- W2767511704 hasConcept C153180895 @default.
- W2767511704 hasConcept C154945302 @default.
- W2767511704 hasConcept C159078339 @default.
- W2767511704 hasConcept C164226766 @default.
- W2767511704 hasConcept C185429906 @default.
- W2767511704 hasConcept C33923547 @default.
- W2767511704 hasConcept C34736171 @default.
- W2767511704 hasConcept C41008148 @default.
- W2767511704 hasConcept C9417928 @default.
- W2767511704 hasConcept C99498987 @default.
- W2767511704 hasConceptScore W2767511704C103278499 @default.
- W2767511704 hasConceptScore W2767511704C105795698 @default.
- W2767511704 hasConceptScore W2767511704C106430172 @default.
- W2767511704 hasConceptScore W2767511704C114614502 @default.
- W2767511704 hasConceptScore W2767511704C115961682 @default.
- W2767511704 hasConceptScore W2767511704C153180895 @default.
- W2767511704 hasConceptScore W2767511704C154945302 @default.
- W2767511704 hasConceptScore W2767511704C159078339 @default.
- W2767511704 hasConceptScore W2767511704C164226766 @default.
- W2767511704 hasConceptScore W2767511704C185429906 @default.
- W2767511704 hasConceptScore W2767511704C33923547 @default.
- W2767511704 hasConceptScore W2767511704C34736171 @default.
- W2767511704 hasConceptScore W2767511704C41008148 @default.
- W2767511704 hasConceptScore W2767511704C9417928 @default.
- W2767511704 hasConceptScore W2767511704C99498987 @default.
- W2767511704 hasIssue "12" @default.
- W2767511704 hasLocation W27675117041 @default.
- W2767511704 hasOpenAccess W2767511704 @default.
- W2767511704 hasPrimaryLocation W27675117041 @default.
- W2767511704 hasRelatedWork W1766550789 @default.
- W2767511704 hasRelatedWork W2019190440 @default.
- W2767511704 hasRelatedWork W2027399350 @default.
- W2767511704 hasRelatedWork W2044184146 @default.
- W2767511704 hasRelatedWork W2060875994 @default.
- W2767511704 hasRelatedWork W2070598848 @default.
- W2767511704 hasRelatedWork W2072166414 @default.
- W2767511704 hasRelatedWork W3034375524 @default.
- W2767511704 hasRelatedWork W3034864990 @default.
- W2767511704 hasRelatedWork W3209970181 @default.
- W2767511704 hasVolume "14" @default.
- W2767511704 isParatext "false" @default.