Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772064328> ?p ?o ?g. }
- W2772064328 abstract "We study dynamical properties at finite temperature $(T)$ of Heisenberg spin chains with random antiferromagnetic exchange couplings, which realize the random singlet phase in the low-energy limit, using three complementary numerical methods: exact diagonalization, matrix-product-state algorithms, and stochastic analytic continuation of quantum Monte Carlo results in imaginary time. Specifically, we investigate the dynamic spin structure factor $S(q,ensuremath{omega})$ and its $ensuremath{omega}ensuremath{rightarrow}0$ limit, which are closely related to inelastic neutron scattering and nuclear magnetic resonance (NMR) experiments (through the spin-lattice relaxation rate $1/{T}_{1})$. Our study reveals a continuous narrow band of low-energy excitations in $S(q,ensuremath{omega})$, extending throughout the $q$ space, instead of being restricted to $qensuremath{approx}0$ and $qensuremath{approx}ensuremath{pi}$ as found in the uniform system. Close to $q=ensuremath{pi}$, the scaling properties of these excitations are well captured by the random-singlet theory, but disagreements also exist with some aspects of the predicted $q$ dependence further away from $q=ensuremath{pi}$. Furthermore we also find spin diffusion effects close to $q=0$ that are not contained within the random-singlet theory but give non-negligible contributions to the mean $1/{T}_{1}$. To compare with NMR experiments, we consider the distribution of the local relaxation rates $1/{T}_{1}$. We show that the local $1/{T}_{1}$ values are broadly distributed, approximately according to a stretched exponential. The mean $1/{T}_{1}$ first decreases with $T$, but below a crossover temperature it starts to increase and likely diverges in the limit of a small nuclear resonance frequency ${ensuremath{omega}}_{0}$. Although a similar divergent behavior has been predicted and experimentally observed for the static uniform susceptibility, this divergent behavior of the mean $1/{T}_{1}$ has never been experimentally observed. Indeed, we show that the divergence of the mean $1/{T}_{1}$ is due to rare events in the disordered chains and is concealed in experiments, where the typical $1/{T}_{1}$ value is accessed." @default.
- W2772064328 created "2017-12-22" @default.
- W2772064328 creator A5007226931 @default.
- W2772064328 creator A5012747099 @default.
- W2772064328 creator A5033845918 @default.
- W2772064328 creator A5052165123 @default.
- W2772064328 creator A5085427972 @default.
- W2772064328 date "2018-03-28" @default.
- W2772064328 modified "2023-10-14" @default.
- W2772064328 title "Dynamical properties of the <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math> random Heisenberg chain" @default.
- W2772064328 cites W1484847697 @default.
- W2772064328 cites W1515890111 @default.
- W2772064328 cites W1522370121 @default.
- W2772064328 cites W1539241585 @default.
- W2772064328 cites W1550516781 @default.
- W2772064328 cites W1551328582 @default.
- W2772064328 cites W1571799119 @default.
- W2772064328 cites W1886301315 @default.
- W2772064328 cites W1967495260 @default.
- W2772064328 cites W1970259567 @default.
- W2772064328 cites W1971439088 @default.
- W2772064328 cites W1971557384 @default.
- W2772064328 cites W1972176353 @default.
- W2772064328 cites W1972425769 @default.
- W2772064328 cites W1973625711 @default.
- W2772064328 cites W1978026213 @default.
- W2772064328 cites W1986443652 @default.
- W2772064328 cites W1987648074 @default.
- W2772064328 cites W1993206737 @default.
- W2772064328 cites W1996254514 @default.
- W2772064328 cites W2000758854 @default.
- W2772064328 cites W2004203093 @default.
- W2772064328 cites W2006805535 @default.
- W2772064328 cites W2011444051 @default.
- W2772064328 cites W2012869619 @default.
- W2772064328 cites W2013107996 @default.
- W2772064328 cites W2013697271 @default.
- W2772064328 cites W2016407890 @default.
- W2772064328 cites W2016450409 @default.
- W2772064328 cites W2016751437 @default.
- W2772064328 cites W2017220438 @default.
- W2772064328 cites W2024399357 @default.
- W2772064328 cites W2024907752 @default.
- W2772064328 cites W2027138829 @default.
- W2772064328 cites W2028546484 @default.
- W2772064328 cites W2029988547 @default.
- W2772064328 cites W2030855618 @default.
- W2772064328 cites W2031709872 @default.
- W2772064328 cites W2032317411 @default.
- W2772064328 cites W2037768897 @default.
- W2772064328 cites W2040178993 @default.
- W2772064328 cites W2040793946 @default.
- W2772064328 cites W2041907831 @default.
- W2772064328 cites W2044573796 @default.
- W2772064328 cites W2048939288 @default.
- W2772064328 cites W2050290456 @default.
- W2772064328 cites W2051184065 @default.
- W2772064328 cites W2052566059 @default.
- W2772064328 cites W2052867955 @default.
- W2772064328 cites W2057044129 @default.
- W2772064328 cites W2061485736 @default.
- W2772064328 cites W2062263366 @default.
- W2772064328 cites W2063322932 @default.
- W2772064328 cites W2065552177 @default.
- W2772064328 cites W2069828241 @default.
- W2772064328 cites W2071872687 @default.
- W2772064328 cites W2074415863 @default.
- W2772064328 cites W2083137592 @default.
- W2772064328 cites W2087235239 @default.
- W2772064328 cites W2087258602 @default.
- W2772064328 cites W2093778011 @default.
- W2772064328 cites W2126529094 @default.
- W2772064328 cites W2159384783 @default.
- W2772064328 cites W2247515272 @default.
- W2772064328 cites W2271921877 @default.
- W2772064328 cites W2300869610 @default.
- W2772064328 cites W2322827653 @default.
- W2772064328 cites W2441066892 @default.
- W2772064328 cites W2464644238 @default.
- W2772064328 cites W2469567612 @default.
- W2772064328 cites W2534276530 @default.
- W2772064328 cites W2555629808 @default.
- W2772064328 cites W2580711636 @default.
- W2772064328 cites W3103713775 @default.
- W2772064328 cites W3103910456 @default.
- W2772064328 cites W3105617471 @default.
- W2772064328 cites W3123676996 @default.
- W2772064328 doi "https://doi.org/10.1103/physrevb.97.104424" @default.
- W2772064328 hasPublicationYear "2018" @default.
- W2772064328 type Work @default.
- W2772064328 sameAs 2772064328 @default.
- W2772064328 citedByCount "24" @default.
- W2772064328 countsByYear W27720643282018 @default.
- W2772064328 countsByYear W27720643282019 @default.
- W2772064328 countsByYear W27720643282020 @default.
- W2772064328 countsByYear W27720643282021 @default.
- W2772064328 countsByYear W27720643282022 @default.
- W2772064328 countsByYear W27720643282023 @default.
- W2772064328 crossrefType "journal-article" @default.
- W2772064328 hasAuthorship W2772064328A5007226931 @default.