Matches in SemOpenAlex for { <https://semopenalex.org/work/W2780963470> ?p ?o ?g. }
- W2780963470 endingPage "60" @default.
- W2780963470 startingPage "50" @default.
- W2780963470 abstract "Recently, deep neural networks have made significant breakthroughs in the image super-resolution (SR) field. Most deep learning-based image SR methods learn an end-to-end network to discover the mapping relationship between low-resolution (LR) and high-resolution (HR) images in order to produce visually satisfactory images. However, these methods only extract a single scale feature to learn the mapping relationship, which will miss some critical information that is required for reconstruction. In this paper, we propose a compressed multi-scale feature fusion (MSFF) network for single image SR. Several MSFF modules are used in the network to extract image features at different scales, which enables us to capture more complete structure and context information of the image for better SR quality. Furthermore, to solve the problems of training difficulty and computational expense consumption caused by the use of the multi-scale structure, structure sparse regularization is designed to learn a MSFF network with a sparse structure and obtain a compressed network, which greatly reduces the network parameters and accelerates the speed whilst sustaining the reconstruction quality. Extensive experiments on a variety of images show that the proposed method can achieve more desirable performance in terms of visual quality than several state-of-the-art methods." @default.
- W2780963470 created "2018-01-05" @default.
- W2780963470 creator A5015874725 @default.
- W2780963470 creator A5018616480 @default.
- W2780963470 creator A5035747364 @default.
- W2780963470 creator A5062655544 @default.
- W2780963470 creator A5078602884 @default.
- W2780963470 date "2018-05-01" @default.
- W2780963470 modified "2023-10-18" @default.
- W2780963470 title "Compressed multi-scale feature fusion network for single image super-resolution" @default.
- W2780963470 cites W1672347394 @default.
- W2780963470 cites W1989936475 @default.
- W2780963470 cites W2010070459 @default.
- W2780963470 cites W2029684123 @default.
- W2780963470 cites W2035677848 @default.
- W2780963470 cites W2058523468 @default.
- W2780963470 cites W2067042811 @default.
- W2780963470 cites W2081239020 @default.
- W2780963470 cites W2087380704 @default.
- W2780963470 cites W2088254198 @default.
- W2780963470 cites W2094507611 @default.
- W2780963470 cites W2097074225 @default.
- W2780963470 cites W2118985252 @default.
- W2780963470 cites W2133665775 @default.
- W2780963470 cites W2138714160 @default.
- W2780963470 cites W2157954477 @default.
- W2780963470 cites W2172128189 @default.
- W2780963470 cites W2189540548 @default.
- W2780963470 cites W2327894203 @default.
- W2780963470 cites W2469023256 @default.
- W2780963470 cites W2520861906 @default.
- W2780963470 cites W2531468424 @default.
- W2780963470 cites W2588998993 @default.
- W2780963470 cites W2619145493 @default.
- W2780963470 cites W2733584164 @default.
- W2780963470 doi "https://doi.org/10.1016/j.sigpro.2017.12.017" @default.
- W2780963470 hasPublicationYear "2018" @default.
- W2780963470 type Work @default.
- W2780963470 sameAs 2780963470 @default.
- W2780963470 citedByCount "20" @default.
- W2780963470 countsByYear W27809634702019 @default.
- W2780963470 countsByYear W27809634702020 @default.
- W2780963470 countsByYear W27809634702021 @default.
- W2780963470 countsByYear W27809634702022 @default.
- W2780963470 crossrefType "journal-article" @default.
- W2780963470 hasAuthorship W2780963470A5015874725 @default.
- W2780963470 hasAuthorship W2780963470A5018616480 @default.
- W2780963470 hasAuthorship W2780963470A5035747364 @default.
- W2780963470 hasAuthorship W2780963470A5062655544 @default.
- W2780963470 hasAuthorship W2780963470A5078602884 @default.
- W2780963470 hasConcept C115961682 @default.
- W2780963470 hasConcept C124851039 @default.
- W2780963470 hasConcept C138885662 @default.
- W2780963470 hasConcept C153180895 @default.
- W2780963470 hasConcept C154945302 @default.
- W2780963470 hasConcept C166957645 @default.
- W2780963470 hasConcept C205649164 @default.
- W2780963470 hasConcept C2776401178 @default.
- W2780963470 hasConcept C2778755073 @default.
- W2780963470 hasConcept C2779343474 @default.
- W2780963470 hasConcept C31258907 @default.
- W2780963470 hasConcept C31972630 @default.
- W2780963470 hasConcept C41008148 @default.
- W2780963470 hasConcept C41895202 @default.
- W2780963470 hasConcept C50644808 @default.
- W2780963470 hasConcept C55020928 @default.
- W2780963470 hasConcept C58640448 @default.
- W2780963470 hasConcept C88796919 @default.
- W2780963470 hasConceptScore W2780963470C115961682 @default.
- W2780963470 hasConceptScore W2780963470C124851039 @default.
- W2780963470 hasConceptScore W2780963470C138885662 @default.
- W2780963470 hasConceptScore W2780963470C153180895 @default.
- W2780963470 hasConceptScore W2780963470C154945302 @default.
- W2780963470 hasConceptScore W2780963470C166957645 @default.
- W2780963470 hasConceptScore W2780963470C205649164 @default.
- W2780963470 hasConceptScore W2780963470C2776401178 @default.
- W2780963470 hasConceptScore W2780963470C2778755073 @default.
- W2780963470 hasConceptScore W2780963470C2779343474 @default.
- W2780963470 hasConceptScore W2780963470C31258907 @default.
- W2780963470 hasConceptScore W2780963470C31972630 @default.
- W2780963470 hasConceptScore W2780963470C41008148 @default.
- W2780963470 hasConceptScore W2780963470C41895202 @default.
- W2780963470 hasConceptScore W2780963470C50644808 @default.
- W2780963470 hasConceptScore W2780963470C55020928 @default.
- W2780963470 hasConceptScore W2780963470C58640448 @default.
- W2780963470 hasConceptScore W2780963470C88796919 @default.
- W2780963470 hasLocation W27809634701 @default.
- W2780963470 hasOpenAccess W2780963470 @default.
- W2780963470 hasPrimaryLocation W27809634701 @default.
- W2780963470 hasRelatedWork W1504288058 @default.
- W2780963470 hasRelatedWork W2017205855 @default.
- W2780963470 hasRelatedWork W2031347084 @default.
- W2780963470 hasRelatedWork W2048505601 @default.
- W2780963470 hasRelatedWork W2167293474 @default.
- W2780963470 hasRelatedWork W2331674254 @default.
- W2780963470 hasRelatedWork W2358403311 @default.
- W2780963470 hasRelatedWork W2922188210 @default.
- W2780963470 hasRelatedWork W2979079341 @default.