Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801367092> ?p ?o ?g. }
- W2801367092 endingPage "6366" @default.
- W2801367092 startingPage "6353" @default.
- W2801367092 abstract "Abstract. In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the “Green Great Wall” (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from −5 to −15 % in the NCP, with a maximum reduction of −12.4 % (−19.2 µg m−3) in BTH and −7.6 % (−10.1 µg m−3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP. Because the air pollution is severe in eastern China, especially in the NCP, and the contribution of dust episodes is significant, the reduction of dust concentrations will have important effects on severe air pollution. This study illustrates the considerable contribution of ERPs to the control of air pollution in China, especially in springtime." @default.
- W2801367092 created "2018-05-17" @default.
- W2801367092 creator A5000320455 @default.
- W2801367092 creator A5004477087 @default.
- W2801367092 creator A5013178268 @default.
- W2801367092 creator A5019858195 @default.
- W2801367092 creator A5046127957 @default.
- W2801367092 creator A5052292633 @default.
- W2801367092 creator A5052876236 @default.
- W2801367092 creator A5065350358 @default.
- W2801367092 date "2018-05-04" @default.
- W2801367092 modified "2023-10-11" @default.
- W2801367092 title "Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study" @default.
- W2801367092 cites W1563813466 @default.
- W2801367092 cites W1574031902 @default.
- W2801367092 cites W1821829701 @default.
- W2801367092 cites W1963936491 @default.
- W2801367092 cites W1969242909 @default.
- W2801367092 cites W1973577532 @default.
- W2801367092 cites W1983248868 @default.
- W2801367092 cites W1998081962 @default.
- W2801367092 cites W2002570697 @default.
- W2801367092 cites W2005548759 @default.
- W2801367092 cites W2006336773 @default.
- W2801367092 cites W2006577932 @default.
- W2801367092 cites W2008071410 @default.
- W2801367092 cites W2009000000 @default.
- W2801367092 cites W2009805657 @default.
- W2801367092 cites W2011340228 @default.
- W2801367092 cites W2013376231 @default.
- W2801367092 cites W2013748186 @default.
- W2801367092 cites W2014407323 @default.
- W2801367092 cites W2038243233 @default.
- W2801367092 cites W2039829115 @default.
- W2801367092 cites W2040868998 @default.
- W2801367092 cites W2042692910 @default.
- W2801367092 cites W2047744778 @default.
- W2801367092 cites W2049182348 @default.
- W2801367092 cites W2049715684 @default.
- W2801367092 cites W2058963764 @default.
- W2801367092 cites W2059379980 @default.
- W2801367092 cites W2067123747 @default.
- W2801367092 cites W2069451844 @default.
- W2801367092 cites W2078078291 @default.
- W2801367092 cites W2078517784 @default.
- W2801367092 cites W2079374898 @default.
- W2801367092 cites W2088421352 @default.
- W2801367092 cites W2094406314 @default.
- W2801367092 cites W2102838361 @default.
- W2801367092 cites W2106659732 @default.
- W2801367092 cites W2108714619 @default.
- W2801367092 cites W2121025662 @default.
- W2801367092 cites W2121690346 @default.
- W2801367092 cites W2124867185 @default.
- W2801367092 cites W2134914335 @default.
- W2801367092 cites W2136408596 @default.
- W2801367092 cites W2140805694 @default.
- W2801367092 cites W2141015689 @default.
- W2801367092 cites W2149947206 @default.
- W2801367092 cites W2150815605 @default.
- W2801367092 cites W2152130773 @default.
- W2801367092 cites W2160362513 @default.
- W2801367092 cites W2170312901 @default.
- W2801367092 cites W2172525329 @default.
- W2801367092 cites W2173251738 @default.
- W2801367092 cites W2175565447 @default.
- W2801367092 cites W2192895533 @default.
- W2801367092 cites W2208446262 @default.
- W2801367092 cites W2213311159 @default.
- W2801367092 cites W2263197301 @default.
- W2801367092 cites W2328927841 @default.
- W2801367092 cites W2329861049 @default.
- W2801367092 cites W2330037103 @default.
- W2801367092 cites W2515812946 @default.
- W2801367092 cites W2583312099 @default.
- W2801367092 cites W2583524139 @default.
- W2801367092 cites W2586754889 @default.
- W2801367092 doi "https://doi.org/10.5194/acp-18-6353-2018" @default.
- W2801367092 hasPublicationYear "2018" @default.
- W2801367092 type Work @default.
- W2801367092 sameAs 2801367092 @default.
- W2801367092 citedByCount "14" @default.
- W2801367092 countsByYear W28013670922019 @default.
- W2801367092 countsByYear W28013670922020 @default.
- W2801367092 countsByYear W28013670922021 @default.
- W2801367092 countsByYear W28013670922022 @default.
- W2801367092 countsByYear W28013670922023 @default.
- W2801367092 crossrefType "journal-article" @default.
- W2801367092 hasAuthorship W2801367092A5000320455 @default.
- W2801367092 hasAuthorship W2801367092A5004477087 @default.
- W2801367092 hasAuthorship W2801367092A5013178268 @default.
- W2801367092 hasAuthorship W2801367092A5019858195 @default.
- W2801367092 hasAuthorship W2801367092A5046127957 @default.
- W2801367092 hasAuthorship W2801367092A5052292633 @default.
- W2801367092 hasAuthorship W2801367092A5052876236 @default.
- W2801367092 hasAuthorship W2801367092A5065350358 @default.
- W2801367092 hasBestOaLocation W28013670921 @default.
- W2801367092 hasConcept C105306849 @default.