Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801452020> ?p ?o ?g. }
- W2801452020 endingPage "108" @default.
- W2801452020 startingPage "99" @default.
- W2801452020 abstract "Because examining correlated (vs. individual) brain activity is a superior method for locating neural correlates of a stimulus, using a network approach for analyzing brain activity is gaining interest. In this study, we propose and illustrate the use of association rule mining (ARM) to analyze brain regions that are activated simultaneously. ARM is commonly used in marketing and other disciplines to help determine items that might be purchased together. We apply this technique toward identifying correlated brain regions that may respond simultaneously to specific stimuli. Our objective is to introduce ARM, describe a process for converting neural images into viable datasets (for analyses), and suggest how to apply this process for generating insights about the brain's responses to specific stimuli (e.g. technology-associated interruptions). We analyze electroencephalogram (EEG) data collected from 46 participants; convert brain waves into images via a source localization algorithm known as sLORETA (i.e., standardized low-resolution brain electromagnetic tomography); reorganize these into a “transactional” dataset; and generate association rules through ARM. We compare the results with more conventional methods for analyzing neuroimaging data. We show that there is a stronger correlation between frontal lobe and sublobar/insula regions after interruptions. This result would not be obvious from independent analysis of each region. The main contribution of this paper is introducing ARM as a method for analyzing multiple images. We suggest that the biomedical community may apply this commonly available data mining technique to develop further insights about correlated regions affected by specific stimuli." @default.
- W2801452020 created "2018-05-17" @default.
- W2801452020 creator A5011940674 @default.
- W2801452020 creator A5088846616 @default.
- W2801452020 date "2018-08-01" @default.
- W2801452020 modified "2023-09-27" @default.
- W2801452020 title "BIARAM: A process for analyzing correlated brain regions using association rule mining" @default.
- W2801452020 cites W1967435857 @default.
- W2801452020 cites W1969416882 @default.
- W2801452020 cites W1974194285 @default.
- W2801452020 cites W1975996475 @default.
- W2801452020 cites W1979426401 @default.
- W2801452020 cites W1983811663 @default.
- W2801452020 cites W1997371338 @default.
- W2801452020 cites W1999783865 @default.
- W2801452020 cites W2001428189 @default.
- W2801452020 cites W2003220467 @default.
- W2801452020 cites W2018338408 @default.
- W2801452020 cites W2037061087 @default.
- W2801452020 cites W2037983950 @default.
- W2801452020 cites W2051270078 @default.
- W2801452020 cites W2055144845 @default.
- W2801452020 cites W2055219522 @default.
- W2801452020 cites W2056944867 @default.
- W2801452020 cites W2058741064 @default.
- W2801452020 cites W2066189612 @default.
- W2801452020 cites W2095491050 @default.
- W2801452020 cites W2099404336 @default.
- W2801452020 cites W2100937930 @default.
- W2801452020 cites W2103717170 @default.
- W2801452020 cites W2120626527 @default.
- W2801452020 cites W2133903921 @default.
- W2801452020 cites W2134110221 @default.
- W2801452020 cites W2138790588 @default.
- W2801452020 cites W2141220295 @default.
- W2801452020 cites W2145291446 @default.
- W2801452020 cites W2146232320 @default.
- W2801452020 cites W2147659606 @default.
- W2801452020 cites W2148728833 @default.
- W2801452020 cites W2156824663 @default.
- W2801452020 cites W2157016731 @default.
- W2801452020 cites W2167054782 @default.
- W2801452020 cites W2512279548 @default.
- W2801452020 cites W2534299759 @default.
- W2801452020 cites W2593021614 @default.
- W2801452020 cites W2594793595 @default.
- W2801452020 cites W2769584886 @default.
- W2801452020 cites W2807423832 @default.
- W2801452020 doi "https://doi.org/10.1016/j.cmpb.2018.05.001" @default.
- W2801452020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29903499" @default.
- W2801452020 hasPublicationYear "2018" @default.
- W2801452020 type Work @default.
- W2801452020 sameAs 2801452020 @default.
- W2801452020 citedByCount "7" @default.
- W2801452020 countsByYear W28014520202020 @default.
- W2801452020 countsByYear W28014520202022 @default.
- W2801452020 countsByYear W28014520202023 @default.
- W2801452020 crossrefType "journal-article" @default.
- W2801452020 hasAuthorship W2801452020A5011940674 @default.
- W2801452020 hasAuthorship W2801452020A5088846616 @default.
- W2801452020 hasConcept C111919701 @default.
- W2801452020 hasConcept C117220453 @default.
- W2801452020 hasConcept C119857082 @default.
- W2801452020 hasConcept C120843803 @default.
- W2801452020 hasConcept C124101348 @default.
- W2801452020 hasConcept C142853389 @default.
- W2801452020 hasConcept C153180895 @default.
- W2801452020 hasConcept C154945302 @default.
- W2801452020 hasConcept C15744967 @default.
- W2801452020 hasConcept C169760540 @default.
- W2801452020 hasConcept C193524817 @default.
- W2801452020 hasConcept C2524010 @default.
- W2801452020 hasConcept C33923547 @default.
- W2801452020 hasConcept C41008148 @default.
- W2801452020 hasConcept C50644808 @default.
- W2801452020 hasConcept C522805319 @default.
- W2801452020 hasConcept C542102704 @default.
- W2801452020 hasConcept C58693492 @default.
- W2801452020 hasConcept C98045186 @default.
- W2801452020 hasConceptScore W2801452020C111919701 @default.
- W2801452020 hasConceptScore W2801452020C117220453 @default.
- W2801452020 hasConceptScore W2801452020C119857082 @default.
- W2801452020 hasConceptScore W2801452020C120843803 @default.
- W2801452020 hasConceptScore W2801452020C124101348 @default.
- W2801452020 hasConceptScore W2801452020C142853389 @default.
- W2801452020 hasConceptScore W2801452020C153180895 @default.
- W2801452020 hasConceptScore W2801452020C154945302 @default.
- W2801452020 hasConceptScore W2801452020C15744967 @default.
- W2801452020 hasConceptScore W2801452020C169760540 @default.
- W2801452020 hasConceptScore W2801452020C193524817 @default.
- W2801452020 hasConceptScore W2801452020C2524010 @default.
- W2801452020 hasConceptScore W2801452020C33923547 @default.
- W2801452020 hasConceptScore W2801452020C41008148 @default.
- W2801452020 hasConceptScore W2801452020C50644808 @default.
- W2801452020 hasConceptScore W2801452020C522805319 @default.
- W2801452020 hasConceptScore W2801452020C542102704 @default.
- W2801452020 hasConceptScore W2801452020C58693492 @default.
- W2801452020 hasConceptScore W2801452020C98045186 @default.