Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803811457> ?p ?o ?g. }
- W2803811457 endingPage "146" @default.
- W2803811457 startingPage "131" @default.
- W2803811457 abstract "Safe and reliable operation of power plants invariably relies on the structural integrity assessments of pressure vessels and piping systems. Welded joints are a potential source of failure, because of the combination of the variation in mechanical properties and the residual stresses associated with the thermomechanical cycles experienced by the material during welding. This paper presents comparative studies between methods based on artificial neural networks (ANN) and fuzzy neural networks (FNN) for predicting residual stresses induced by welding. The performance of neural network and neuro-fuzzy systems are compared based on statistical indicators, scatter plots and several case studies. Results show that the neuro-fuzzy systems optimised using a hybrid technique can perform slightly better than a neural network trained using Levenberg-Marquardt algorithm, primarily because of the inability of the ANN approach to provide conservative estimates of residual stress profiles. Specifically, the prediction accuracy of the neuro-fuzzy systems trained using the hybrid technique is better for the axial residual stress component, with root mean square error (RMSE), absolute fraction of variance (R2) and mean absolute percentage error (MAPE) error of 0.1264, 0.9102 and 22.9442 respectively using the test data. Furthermore, this study demonstrates the potential benefits of implementing neuro-fuzzy systems in predicting residual stresses for use in structural integrity assessment of power plant components." @default.
- W2803811457 created "2018-06-01" @default.
- W2803811457 creator A5040575789 @default.
- W2803811457 creator A5046262492 @default.
- W2803811457 creator A5063066045 @default.
- W2803811457 creator A5074118906 @default.
- W2803811457 creator A5076893324 @default.
- W2803811457 date "2018-09-01" @default.
- W2803811457 modified "2023-09-27" @default.
- W2803811457 title "Prediction of welding residual stresses using machine learning: Comparison between neural networks and neuro-fuzzy systems" @default.
- W2803811457 cites W1498436455 @default.
- W2803811457 cites W1970482293 @default.
- W2803811457 cites W1974745237 @default.
- W2803811457 cites W1987200501 @default.
- W2803811457 cites W2001015799 @default.
- W2803811457 cites W2016812158 @default.
- W2803811457 cites W2019207321 @default.
- W2803811457 cites W2035321923 @default.
- W2803811457 cites W2047863031 @default.
- W2803811457 cites W2058170560 @default.
- W2803811457 cites W2060520223 @default.
- W2803811457 cites W2076347668 @default.
- W2803811457 cites W2079325629 @default.
- W2803811457 cites W2085447320 @default.
- W2803811457 cites W2087741609 @default.
- W2803811457 cites W2087836814 @default.
- W2803811457 cites W2097402081 @default.
- W2803811457 cites W2137983211 @default.
- W2803811457 cites W2254917760 @default.
- W2803811457 cites W2467393383 @default.
- W2803811457 cites W2488544472 @default.
- W2803811457 cites W2582053299 @default.
- W2803811457 cites W2591137159 @default.
- W2803811457 cites W2762107548 @default.
- W2803811457 cites W2790764399 @default.
- W2803811457 doi "https://doi.org/10.1016/j.asoc.2018.05.017" @default.
- W2803811457 hasPublicationYear "2018" @default.
- W2803811457 type Work @default.
- W2803811457 sameAs 2803811457 @default.
- W2803811457 citedByCount "64" @default.
- W2803811457 countsByYear W28038114572019 @default.
- W2803811457 countsByYear W28038114572020 @default.
- W2803811457 countsByYear W28038114572021 @default.
- W2803811457 countsByYear W28038114572022 @default.
- W2803811457 countsByYear W28038114572023 @default.
- W2803811457 crossrefType "journal-article" @default.
- W2803811457 hasAuthorship W2803811457A5040575789 @default.
- W2803811457 hasAuthorship W2803811457A5046262492 @default.
- W2803811457 hasAuthorship W2803811457A5063066045 @default.
- W2803811457 hasAuthorship W2803811457A5074118906 @default.
- W2803811457 hasAuthorship W2803811457A5076893324 @default.
- W2803811457 hasBestOaLocation W28038114572 @default.
- W2803811457 hasConcept C105795698 @default.
- W2803811457 hasConcept C11413529 @default.
- W2803811457 hasConcept C127413603 @default.
- W2803811457 hasConcept C139945424 @default.
- W2803811457 hasConcept C150217764 @default.
- W2803811457 hasConcept C154945302 @default.
- W2803811457 hasConcept C155512373 @default.
- W2803811457 hasConcept C19474535 @default.
- W2803811457 hasConcept C195975749 @default.
- W2803811457 hasConcept C29470771 @default.
- W2803811457 hasConcept C33923547 @default.
- W2803811457 hasConcept C41008148 @default.
- W2803811457 hasConcept C50644808 @default.
- W2803811457 hasConcept C58166 @default.
- W2803811457 hasConcept C78519656 @default.
- W2803811457 hasConceptScore W2803811457C105795698 @default.
- W2803811457 hasConceptScore W2803811457C11413529 @default.
- W2803811457 hasConceptScore W2803811457C127413603 @default.
- W2803811457 hasConceptScore W2803811457C139945424 @default.
- W2803811457 hasConceptScore W2803811457C150217764 @default.
- W2803811457 hasConceptScore W2803811457C154945302 @default.
- W2803811457 hasConceptScore W2803811457C155512373 @default.
- W2803811457 hasConceptScore W2803811457C19474535 @default.
- W2803811457 hasConceptScore W2803811457C195975749 @default.
- W2803811457 hasConceptScore W2803811457C29470771 @default.
- W2803811457 hasConceptScore W2803811457C33923547 @default.
- W2803811457 hasConceptScore W2803811457C41008148 @default.
- W2803811457 hasConceptScore W2803811457C50644808 @default.
- W2803811457 hasConceptScore W2803811457C58166 @default.
- W2803811457 hasConceptScore W2803811457C78519656 @default.
- W2803811457 hasLocation W28038114571 @default.
- W2803811457 hasLocation W28038114572 @default.
- W2803811457 hasOpenAccess W2803811457 @default.
- W2803811457 hasPrimaryLocation W28038114571 @default.
- W2803811457 hasRelatedWork W2594589062 @default.
- W2803811457 hasRelatedWork W2726592933 @default.
- W2803811457 hasRelatedWork W2778123278 @default.
- W2803811457 hasRelatedWork W2807954395 @default.
- W2803811457 hasRelatedWork W2942773263 @default.
- W2803811457 hasRelatedWork W3216603269 @default.
- W2803811457 hasRelatedWork W4200265123 @default.
- W2803811457 hasRelatedWork W4213016846 @default.
- W2803811457 hasRelatedWork W4281693556 @default.
- W2803811457 hasRelatedWork W4297510009 @default.
- W2803811457 hasVolume "70" @default.
- W2803811457 isParatext "false" @default.