Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808911004> ?p ?o ?g. }
- W2808911004 endingPage "239" @default.
- W2808911004 startingPage "229" @default.
- W2808911004 abstract "Abstract This paper is based on two initial hypotheses, firstly, it is proposed that the vegetation volume obtained with a LIDAR-based system or tree row LIDAR volume (TRLV) has a high correlation with the leaf area (LA). Secondly, it is proposed that the projected outer surface or projected tree row surface (PTRS), also LIDAR-based, is linearly related with the LA. The verification of these two hypotheses corresponds to the first two objectives of this work. The third objective is to propose an alternative method, without using LIDAR sensors, simpler and more economical, for in situ LA evaluation. To achieve these objectives a total of 17 blocks of pear, 14 of apple and 26 of vine, in different phenological states, were LIDAR scanned and subsequently manually defoliated. After the field and calculation work, the TRLV and LA were compared. The logarithmic regressions obtained had high correlations. For apple and pear trees the equations are practically the same with R2 of 0.85 and 0.84, respectively. The equation corresponding to vines is somewhat different and has an R2 of 0.86. The regression without species differentiation is 3.66ln(x)+9.65 with R2 = 0.90. Based on the TRLV, the front and top projected surface areas of each block were then obtained and, using these variables, the PTRS. The linear regressions obtained between PTRS and LA have high correlations with R2 of 0.88, 0.85 and 0.80 for apple trees, pear trees, and vineyard respectively. The three crops show very similar behavior. The straight lines are very close, with very similar slopes. With no species differentiation the linear regression model is y = 1.47x – 1.18 with R2 = 0.93. The starting point of the third objective is to obtain the projected surfaces, frontal and top, without using a LIDAR sensor. These surfaces are not as precise as those obtained with LIDAR and for this reason they are referred to as “estimated” projected surfaces. To calculate the estimated PTRS without a LIDAR sensor, the height and depth of the vegetation are measured with a tape measure. It is also necessary to make a visual estimation of the frontal gap-fraction. For this, a training method with known gap-fraction pictograms is proposed. The final results with this non-LIDAR method are very similar to those obtained with LIDAR. This method, although it needs human intervention, is simple, easy, economical and precise for in situ LA estimation." @default.
- W2808911004 created "2018-06-29" @default.
- W2808911004 creator A5016068388 @default.
- W2808911004 creator A5018866844 @default.
- W2808911004 creator A5025350762 @default.
- W2808911004 creator A5027405331 @default.
- W2808911004 creator A5061612286 @default.
- W2808911004 creator A5071066114 @default.
- W2808911004 creator A5089775606 @default.
- W2808911004 date "2018-10-01" @default.
- W2808911004 modified "2023-10-03" @default.
- W2808911004 title "LIDAR and non-LIDAR-based canopy parameters to estimate the leaf area in fruit trees and vineyard" @default.
- W2808911004 cites W1511208807 @default.
- W2808911004 cites W1887882745 @default.
- W2808911004 cites W1963941451 @default.
- W2808911004 cites W1967097622 @default.
- W2808911004 cites W1973789135 @default.
- W2808911004 cites W1993752013 @default.
- W2808911004 cites W1998431135 @default.
- W2808911004 cites W1998957178 @default.
- W2808911004 cites W2008003877 @default.
- W2808911004 cites W2026200869 @default.
- W2808911004 cites W2029485959 @default.
- W2808911004 cites W2037304439 @default.
- W2808911004 cites W2037728995 @default.
- W2808911004 cites W2038617433 @default.
- W2808911004 cites W2052623061 @default.
- W2808911004 cites W2073086743 @default.
- W2808911004 cites W2081806902 @default.
- W2808911004 cites W2086181641 @default.
- W2808911004 cites W2112872473 @default.
- W2808911004 cites W2123986772 @default.
- W2808911004 cites W2125165897 @default.
- W2808911004 cites W2129223668 @default.
- W2808911004 cites W2138675784 @default.
- W2808911004 cites W2144157054 @default.
- W2808911004 cites W2145792835 @default.
- W2808911004 cites W2148293865 @default.
- W2808911004 cites W2148900376 @default.
- W2808911004 cites W2295187240 @default.
- W2808911004 cites W2337536913 @default.
- W2808911004 cites W2403799132 @default.
- W2808911004 cites W2514074890 @default.
- W2808911004 cites W2521978848 @default.
- W2808911004 cites W2529284161 @default.
- W2808911004 cites W2571034823 @default.
- W2808911004 cites W2794257937 @default.
- W2808911004 doi "https://doi.org/10.1016/j.agrformet.2018.06.017" @default.
- W2808911004 hasPublicationYear "2018" @default.
- W2808911004 type Work @default.
- W2808911004 sameAs 2808911004 @default.
- W2808911004 citedByCount "46" @default.
- W2808911004 countsByYear W28089110042018 @default.
- W2808911004 countsByYear W28089110042019 @default.
- W2808911004 countsByYear W28089110042020 @default.
- W2808911004 countsByYear W28089110042021 @default.
- W2808911004 countsByYear W28089110042022 @default.
- W2808911004 countsByYear W28089110042023 @default.
- W2808911004 crossrefType "journal-article" @default.
- W2808911004 hasAuthorship W2808911004A5016068388 @default.
- W2808911004 hasAuthorship W2808911004A5018866844 @default.
- W2808911004 hasAuthorship W2808911004A5025350762 @default.
- W2808911004 hasAuthorship W2808911004A5027405331 @default.
- W2808911004 hasAuthorship W2808911004A5061612286 @default.
- W2808911004 hasAuthorship W2808911004A5071066114 @default.
- W2808911004 hasAuthorship W2808911004A5089775606 @default.
- W2808911004 hasBestOaLocation W28089110042 @default.
- W2808911004 hasConcept C101000010 @default.
- W2808911004 hasConcept C166957645 @default.
- W2808911004 hasConcept C18903297 @default.
- W2808911004 hasConcept C197534560 @default.
- W2808911004 hasConcept C205649164 @default.
- W2808911004 hasConcept C2780924976 @default.
- W2808911004 hasConcept C39432304 @default.
- W2808911004 hasConcept C39807119 @default.
- W2808911004 hasConcept C51399673 @default.
- W2808911004 hasConcept C62649853 @default.
- W2808911004 hasConcept C86803240 @default.
- W2808911004 hasConceptScore W2808911004C101000010 @default.
- W2808911004 hasConceptScore W2808911004C166957645 @default.
- W2808911004 hasConceptScore W2808911004C18903297 @default.
- W2808911004 hasConceptScore W2808911004C197534560 @default.
- W2808911004 hasConceptScore W2808911004C205649164 @default.
- W2808911004 hasConceptScore W2808911004C2780924976 @default.
- W2808911004 hasConceptScore W2808911004C39432304 @default.
- W2808911004 hasConceptScore W2808911004C39807119 @default.
- W2808911004 hasConceptScore W2808911004C51399673 @default.
- W2808911004 hasConceptScore W2808911004C62649853 @default.
- W2808911004 hasConceptScore W2808911004C86803240 @default.
- W2808911004 hasLocation W28089110041 @default.
- W2808911004 hasLocation W28089110042 @default.
- W2808911004 hasOpenAccess W2808911004 @default.
- W2808911004 hasPrimaryLocation W28089110041 @default.
- W2808911004 hasRelatedWork W1993516606 @default.
- W2808911004 hasRelatedWork W2065925762 @default.
- W2808911004 hasRelatedWork W2077978013 @default.
- W2808911004 hasRelatedWork W2118970069 @default.
- W2808911004 hasRelatedWork W2133677237 @default.