Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885368502> ?p ?o ?g. }
- W2885368502 endingPage "9" @default.
- W2885368502 startingPage "1" @default.
- W2885368502 abstract "Abstract Efficient, durable and low cost electrocatalysts for O2 and CO2 reductions are required as alternate to expensive metal based catalysts in fuel cells and in the CO2 reduction process. Herein, we describe the synthesis of reduced graphene oxide (rGO)-nickel phthalocyanine (NiPc) composite (rGO-NiPc) as a bifunctional electrocatalyst for O2 and CO2 reductions. The composite material, rGO-NiPc is coated on glassy carbon (GC) electrode (GC/rGO-NiPc) and used as a low cost efficient electrocatalyst for O2 and CO2 reductions. The results show that the addition of rGO to NiPc increases the catalytic efficiency and electrochemical charge transfer rate of NiPc. GC/rGO-NiPc provides the low potentials, +0.25 and −0.11 V (vs RHE) for O2 and CO2 reductions, respectively in 0.1 M HClO4. Kinetic interpretation based on rotating disc electrode studies provides the support for the two electron pathway for CO2 reduction to CO in 0.1 M HClO4. Product analysis by 13C NMR confirms CO as the CO2 reduction product. GC/rGO-NiPc shows a facile four electron pathway for O2 reduction which can be exploited in fuel cells, metal-air batteries, chlor-alkali electrolyzers and oxygen sensing. In addition, GC/rGO-NiPc has efficient methanol tolerance capability for O2 reduction process which is suitable to use in fuel cells. Moreover, GC/rGO-NiPc shows the high operational stability more than an hour for both O2 and CO2 reductions in 0.1 M HClO4." @default.
- W2885368502 created "2018-08-22" @default.
- W2885368502 creator A5003666995 @default.
- W2885368502 creator A5037060080 @default.
- W2885368502 creator A5049679012 @default.
- W2885368502 creator A5076671117 @default.
- W2885368502 creator A5083082023 @default.
- W2885368502 date "2018-10-01" @default.
- W2885368502 modified "2023-09-27" @default.
- W2885368502 title "Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O2 reductions" @default.
- W2885368502 cites W1886463499 @default.
- W2885368502 cites W1964460668 @default.
- W2885368502 cites W1964787661 @default.
- W2885368502 cites W1965087417 @default.
- W2885368502 cites W1965203100 @default.
- W2885368502 cites W1967547501 @default.
- W2885368502 cites W1969537524 @default.
- W2885368502 cites W1970068638 @default.
- W2885368502 cites W1971897361 @default.
- W2885368502 cites W1972497625 @default.
- W2885368502 cites W1975377414 @default.
- W2885368502 cites W1981877594 @default.
- W2885368502 cites W1991839207 @default.
- W2885368502 cites W1993052659 @default.
- W2885368502 cites W1996273492 @default.
- W2885368502 cites W2001432744 @default.
- W2885368502 cites W2001618763 @default.
- W2885368502 cites W2001732100 @default.
- W2885368502 cites W2004178763 @default.
- W2885368502 cites W2004724609 @default.
- W2885368502 cites W2009895627 @default.
- W2885368502 cites W2013116501 @default.
- W2885368502 cites W2015501470 @default.
- W2885368502 cites W2024750866 @default.
- W2885368502 cites W2024777609 @default.
- W2885368502 cites W2025576874 @default.
- W2885368502 cites W2031670446 @default.
- W2885368502 cites W2033487987 @default.
- W2885368502 cites W2037599221 @default.
- W2885368502 cites W2039600208 @default.
- W2885368502 cites W2041504780 @default.
- W2885368502 cites W2044759397 @default.
- W2885368502 cites W2050495907 @default.
- W2885368502 cites W2051717961 @default.
- W2885368502 cites W2052956203 @default.
- W2885368502 cites W2054463262 @default.
- W2885368502 cites W2062120080 @default.
- W2885368502 cites W2069943229 @default.
- W2885368502 cites W2071609703 @default.
- W2885368502 cites W2073104553 @default.
- W2885368502 cites W2074437059 @default.
- W2885368502 cites W2074851479 @default.
- W2885368502 cites W2079097674 @default.
- W2885368502 cites W2082498048 @default.
- W2885368502 cites W2084350317 @default.
- W2885368502 cites W2084443234 @default.
- W2885368502 cites W2099039595 @default.
- W2885368502 cites W2110045599 @default.
- W2885368502 cites W2121621337 @default.
- W2885368502 cites W2130066497 @default.
- W2885368502 cites W2131685226 @default.
- W2885368502 cites W2140746165 @default.
- W2885368502 cites W2146777832 @default.
- W2885368502 cites W2154904451 @default.
- W2885368502 cites W2155062502 @default.
- W2885368502 cites W2197828771 @default.
- W2885368502 cites W2260789390 @default.
- W2885368502 cites W2264858665 @default.
- W2885368502 cites W2438990463 @default.
- W2885368502 cites W2496132953 @default.
- W2885368502 cites W2513067762 @default.
- W2885368502 cites W2561324007 @default.
- W2885368502 cites W2561678406 @default.
- W2885368502 cites W2593630325 @default.
- W2885368502 cites W2746474447 @default.
- W2885368502 cites W2780257271 @default.
- W2885368502 cites W4206656266 @default.
- W2885368502 cites W4248039679 @default.
- W2885368502 doi "https://doi.org/10.1016/j.jelechem.2018.08.020" @default.
- W2885368502 hasPublicationYear "2018" @default.
- W2885368502 type Work @default.
- W2885368502 sameAs 2885368502 @default.
- W2885368502 citedByCount "28" @default.
- W2885368502 countsByYear W28853685022019 @default.
- W2885368502 countsByYear W28853685022020 @default.
- W2885368502 countsByYear W28853685022021 @default.
- W2885368502 countsByYear W28853685022022 @default.
- W2885368502 countsByYear W28853685022023 @default.
- W2885368502 crossrefType "journal-article" @default.
- W2885368502 hasAuthorship W2885368502A5003666995 @default.
- W2885368502 hasAuthorship W2885368502A5037060080 @default.
- W2885368502 hasAuthorship W2885368502A5049679012 @default.
- W2885368502 hasAuthorship W2885368502A5076671117 @default.
- W2885368502 hasAuthorship W2885368502A5083082023 @default.
- W2885368502 hasConcept C147789679 @default.
- W2885368502 hasConcept C161790260 @default.
- W2885368502 hasConcept C171250308 @default.
- W2885368502 hasConcept C17525397 @default.