Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886551330> ?p ?o ?g. }
- W2886551330 endingPage "83" @default.
- W2886551330 startingPage "62" @default.
- W2886551330 abstract "We introduce the robust optimization models for two variants of stable tail-adjusted return ratio (STARR), one with mixed conditional value-at-risk (MCVaR) and the other with deviation MCVaR (DMCVaR), under joint ambiguity in the distribution modeled using copulas. The two models are shown to be computationally tractable linear programs. We apply a two-step procedure to capture the joint dependence structure among the assets. We first extract the filtered residuals from the return series of each asset using AutoRegressive Moving Average Glosten Jagannathan Runkle Generalized Autoregressive Conditional Heteroscedastic (ARMA-GJR-GARCH) model. Subsequently, we exploit the regular vine copulas to model the joint dependence among the transformed residuals. The tree structure in the regular vines is accomplished using Kendall’s tau. We compare the performance of the proposed two robust models with their conventional counterparts when the joint distribution in the latter is described using Gaussian copula only. We also examine the performance of the obtained portfolios against those from the Markowitz model and multivariate GARCH models using the rolling window analysis. We illustrate the superior performance of the proposed robust models than their conventional counterpart models on excess mean returns, Sortino ratio, Rachev ratio, VaR ratio, and Treynor ratio, on three data sets comprising of indices across the globe." @default.
- W2886551330 created "2018-08-22" @default.
- W2886551330 creator A5005040395 @default.
- W2886551330 creator A5031174448 @default.
- W2886551330 creator A5052447672 @default.
- W2886551330 date "2019-02-01" @default.
- W2886551330 modified "2023-10-08" @default.
- W2886551330 title "Robust optimization of mixed CVaR STARR ratio using copulas" @default.
- W2886551330 cites W1491718027 @default.
- W2886551330 cites W1525854150 @default.
- W2886551330 cites W1590831612 @default.
- W2886551330 cites W1647779468 @default.
- W2886551330 cites W1659328432 @default.
- W2886551330 cites W1831243904 @default.
- W2886551330 cites W1979575715 @default.
- W2886551330 cites W1987548977 @default.
- W2886551330 cites W1988471447 @default.
- W2886551330 cites W1992105816 @default.
- W2886551330 cites W1994403842 @default.
- W2886551330 cites W1997414036 @default.
- W2886551330 cites W1999996900 @default.
- W2886551330 cites W2002054890 @default.
- W2886551330 cites W2006093909 @default.
- W2886551330 cites W2015567894 @default.
- W2886551330 cites W2017332597 @default.
- W2886551330 cites W2018364810 @default.
- W2886551330 cites W2021414249 @default.
- W2886551330 cites W2021472931 @default.
- W2886551330 cites W2030338847 @default.
- W2886551330 cites W2043285584 @default.
- W2886551330 cites W2060512288 @default.
- W2886551330 cites W2066017952 @default.
- W2886551330 cites W2069099760 @default.
- W2886551330 cites W2075748568 @default.
- W2886551330 cites W2076741642 @default.
- W2886551330 cites W2079253995 @default.
- W2886551330 cites W2082854060 @default.
- W2886551330 cites W2103735443 @default.
- W2886551330 cites W2118856090 @default.
- W2886551330 cites W2122549219 @default.
- W2886551330 cites W2133626546 @default.
- W2886551330 cites W2134919172 @default.
- W2886551330 cites W2139491749 @default.
- W2886551330 cites W2148654185 @default.
- W2886551330 cites W2153580489 @default.
- W2886551330 cites W2155945500 @default.
- W2886551330 cites W2156577211 @default.
- W2886551330 cites W2160392227 @default.
- W2886551330 cites W2161808462 @default.
- W2886551330 cites W2169439765 @default.
- W2886551330 cites W2228307171 @default.
- W2886551330 cites W2341705921 @default.
- W2886551330 cites W2369025500 @default.
- W2886551330 cites W2482896810 @default.
- W2886551330 cites W2589092125 @default.
- W2886551330 cites W2758292813 @default.
- W2886551330 cites W2777839655 @default.
- W2886551330 cites W2963318064 @default.
- W2886551330 cites W3121757001 @default.
- W2886551330 cites W3122806608 @default.
- W2886551330 cites W3125349010 @default.
- W2886551330 doi "https://doi.org/10.1016/j.cam.2018.08.001" @default.
- W2886551330 hasPublicationYear "2019" @default.
- W2886551330 type Work @default.
- W2886551330 sameAs 2886551330 @default.
- W2886551330 citedByCount "15" @default.
- W2886551330 countsByYear W28865513302019 @default.
- W2886551330 countsByYear W28865513302020 @default.
- W2886551330 countsByYear W28865513302021 @default.
- W2886551330 countsByYear W28865513302022 @default.
- W2886551330 countsByYear W28865513302023 @default.
- W2886551330 crossrefType "journal-article" @default.
- W2886551330 hasAuthorship W2886551330A5005040395 @default.
- W2886551330 hasAuthorship W2886551330A5031174448 @default.
- W2886551330 hasAuthorship W2886551330A5052447672 @default.
- W2886551330 hasBestOaLocation W28865513301 @default.
- W2886551330 hasConcept C101104100 @default.
- W2886551330 hasConcept C105795698 @default.
- W2886551330 hasConcept C118671147 @default.
- W2886551330 hasConcept C149782125 @default.
- W2886551330 hasConcept C159877910 @default.
- W2886551330 hasConcept C161584116 @default.
- W2886551330 hasConcept C162324750 @default.
- W2886551330 hasConcept C17618745 @default.
- W2886551330 hasConcept C187736073 @default.
- W2886551330 hasConcept C23922673 @default.
- W2886551330 hasConcept C2777606061 @default.
- W2886551330 hasConcept C2779676228 @default.
- W2886551330 hasConcept C2779922397 @default.
- W2886551330 hasConcept C32896092 @default.
- W2886551330 hasConcept C33923547 @default.
- W2886551330 hasConcept C5496284 @default.
- W2886551330 hasConcept C91602232 @default.
- W2886551330 hasConceptScore W2886551330C101104100 @default.
- W2886551330 hasConceptScore W2886551330C105795698 @default.
- W2886551330 hasConceptScore W2886551330C118671147 @default.
- W2886551330 hasConceptScore W2886551330C149782125 @default.
- W2886551330 hasConceptScore W2886551330C159877910 @default.