Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891467507> ?p ?o ?g. }
- W2891467507 endingPage "926" @default.
- W2891467507 startingPage "899" @default.
- W2891467507 abstract "Missing data are frequently encountered in high dimensional problems, but they are usually difficult to deal with by using standard algorithms, such as the expectation-maximization algorithm and its variants. To tackle this difficulty, some problem-specific algorithms have been developed in the literature, but there still lacks a general algorithm. This work is to fill the gap: we propose a general algorithm for high dimensional missing data problems. The algorithm works by iterating between an imputation step and a regularized optimization step. At the imputation step, the missing data are imputed conditionally on the observed data and the current estimates of parameters and, at the regularized optimization step, a consistent estimate is found via the regularization approach for the minimizer of a Kullback-Leibler divergence defined on the pseudocomplete data. For high dimensional problems, the consistent estimate can be found under sparsity constraints. The consistency of the averaged estimate for the true parameter can be established under quite general conditions. The algorithm is illustrated by using high dimensional Gaussian graphical models, high dimensional variable selection and a random-coefficient model." @default.
- W2891467507 created "2018-09-27" @default.
- W2891467507 creator A5002140917 @default.
- W2891467507 creator A5050014657 @default.
- W2891467507 creator A5061890586 @default.
- W2891467507 creator A5070413478 @default.
- W2891467507 creator A5085287370 @default.
- W2891467507 date "2018-06-25" @default.
- W2891467507 modified "2023-10-12" @default.
- W2891467507 title "An Imputation–Regularized Optimization Algorithm for High Dimensional Missing Data Problems and Beyond" @default.
- W2891467507 cites W105319308 @default.
- W2891467507 cites W1540764732 @default.
- W2891467507 cites W1599545414 @default.
- W2891467507 cites W1824047490 @default.
- W2891467507 cites W1965125844 @default.
- W2891467507 cites W1967639437 @default.
- W2891467507 cites W1986569836 @default.
- W2891467507 cites W1990885553 @default.
- W2891467507 cites W1992571403 @default.
- W2891467507 cites W2010353172 @default.
- W2891467507 cites W2016119924 @default.
- W2891467507 cites W2035983696 @default.
- W2891467507 cites W2039050532 @default.
- W2891467507 cites W2041701373 @default.
- W2891467507 cites W2046738186 @default.
- W2891467507 cites W2046833400 @default.
- W2891467507 cites W2053742104 @default.
- W2891467507 cites W2059140245 @default.
- W2891467507 cites W2069119359 @default.
- W2891467507 cites W2074682976 @default.
- W2891467507 cites W2077870633 @default.
- W2891467507 cites W2078129874 @default.
- W2891467507 cites W2081746825 @default.
- W2891467507 cites W2091276705 @default.
- W2891467507 cites W2093023711 @default.
- W2891467507 cites W2096863518 @default.
- W2891467507 cites W2103972604 @default.
- W2891467507 cites W2105381419 @default.
- W2891467507 cites W2105760337 @default.
- W2891467507 cites W2111104102 @default.
- W2891467507 cites W2112814716 @default.
- W2891467507 cites W2118254160 @default.
- W2891467507 cites W2119253710 @default.
- W2891467507 cites W2120875981 @default.
- W2891467507 cites W2132555912 @default.
- W2891467507 cites W2137683543 @default.
- W2891467507 cites W2146130798 @default.
- W2891467507 cites W2148534890 @default.
- W2891467507 cites W2149752470 @default.
- W2891467507 cites W2152977846 @default.
- W2891467507 cites W2154185604 @default.
- W2891467507 cites W2154560360 @default.
- W2891467507 cites W2159700154 @default.
- W2891467507 cites W2167942713 @default.
- W2891467507 cites W2169076391 @default.
- W2891467507 cites W2171118759 @default.
- W2891467507 cites W2498094064 @default.
- W2891467507 cites W2562162676 @default.
- W2891467507 cites W2787894218 @default.
- W2891467507 cites W3098834468 @default.
- W2891467507 cites W3099550161 @default.
- W2891467507 cites W3100910045 @default.
- W2891467507 cites W3104393726 @default.
- W2891467507 cites W4238253035 @default.
- W2891467507 cites W4245883374 @default.
- W2891467507 cites W4302617909 @default.
- W2891467507 doi "https://doi.org/10.1111/rssb.12279" @default.
- W2891467507 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6533005" @default.
- W2891467507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31130816" @default.
- W2891467507 hasPublicationYear "2018" @default.
- W2891467507 type Work @default.
- W2891467507 sameAs 2891467507 @default.
- W2891467507 citedByCount "18" @default.
- W2891467507 countsByYear W28914675072018 @default.
- W2891467507 countsByYear W28914675072019 @default.
- W2891467507 countsByYear W28914675072020 @default.
- W2891467507 countsByYear W28914675072021 @default.
- W2891467507 countsByYear W28914675072022 @default.
- W2891467507 countsByYear W28914675072023 @default.
- W2891467507 crossrefType "journal-article" @default.
- W2891467507 hasAuthorship W2891467507A5002140917 @default.
- W2891467507 hasAuthorship W2891467507A5050014657 @default.
- W2891467507 hasAuthorship W2891467507A5061890586 @default.
- W2891467507 hasAuthorship W2891467507A5070413478 @default.
- W2891467507 hasAuthorship W2891467507A5085287370 @default.
- W2891467507 hasBestOaLocation W28914675072 @default.
- W2891467507 hasConcept C105795698 @default.
- W2891467507 hasConcept C11413529 @default.
- W2891467507 hasConcept C119857082 @default.
- W2891467507 hasConcept C121332964 @default.
- W2891467507 hasConcept C124101348 @default.
- W2891467507 hasConcept C126255220 @default.
- W2891467507 hasConcept C137836250 @default.
- W2891467507 hasConcept C154945302 @default.
- W2891467507 hasConcept C163716315 @default.
- W2891467507 hasConcept C182081679 @default.
- W2891467507 hasConcept C2776135515 @default.
- W2891467507 hasConcept C33923547 @default.