Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895024963> ?p ?o ?g. }
- W2895024963 endingPage "12" @default.
- W2895024963 startingPage "1" @default.
- W2895024963 abstract "Vertebrae computed tomography (CT) image automatic segmentation is an essential step for Image-guided minimally invasive spine surgery. However, most of state-of-the-art methods still require human intervention due to the inherent limitations of vertebrae CT image, such as topological variation, irregular boundaries (double boundary, weak boundary), and image noise. Therefore, this paper intentionally designed an automatic global level set approach (AGLSA), which is capable of dealing with these issues for lumbar vertebrae CT image segmentation. Unlike the traditional level set methods, we firstly propose an automatically initialized level set function (AILSF) that comprises hybrid morphological filter (HMF) and Gaussian mixture model (GMM) to automatically generate a smooth initial contour which is precisely adjacent to the object boundary. Secondly, a regularized level set formulation is introduced to overcome the weak boundary leaking problem, which utilizes the region correlation of histograms inside and outside the level set contour as a global term. Ultimately, a gradient vector flow (GVF) based edge-stopping function is employed to guarantee a fast convergence rate of the level set evolution and to avoid level set function oversegmentation at the same time. Our proposed approach has been tested on 115 vertebrae CT volumes of various patients. Quantitative comparisons validate that our proposed AGLSA is more accurate in segmenting lumbar vertebrae CT images with irregular boundaries and more robust to various levels of salt-and-pepper noise." @default.
- W2895024963 created "2018-10-12" @default.
- W2895024963 creator A5017750410 @default.
- W2895024963 creator A5025117178 @default.
- W2895024963 creator A5025711005 @default.
- W2895024963 creator A5040158860 @default.
- W2895024963 date "2018-10-08" @default.
- W2895024963 modified "2023-10-16" @default.
- W2895024963 title "Automatic Global Level Set Approach for Lumbar Vertebrae CT Image Segmentation" @default.
- W2895024963 cites W116922995 @default.
- W2895024963 cites W1490837287 @default.
- W2895024963 cites W1604154211 @default.
- W2895024963 cites W184565980 @default.
- W2895024963 cites W1979064019 @default.
- W2895024963 cites W1979393293 @default.
- W2895024963 cites W1989566756 @default.
- W2895024963 cites W1991113069 @default.
- W2895024963 cites W1998259955 @default.
- W2895024963 cites W2006012053 @default.
- W2895024963 cites W2023534903 @default.
- W2895024963 cites W2047057920 @default.
- W2895024963 cites W2063947012 @default.
- W2895024963 cites W2065812187 @default.
- W2895024963 cites W2067484188 @default.
- W2895024963 cites W2072066060 @default.
- W2895024963 cites W2074395887 @default.
- W2895024963 cites W2084445849 @default.
- W2895024963 cites W2085442996 @default.
- W2895024963 cites W2104095591 @default.
- W2895024963 cites W2104276184 @default.
- W2895024963 cites W2116040950 @default.
- W2895024963 cites W2118237321 @default.
- W2895024963 cites W2123414669 @default.
- W2895024963 cites W2127270894 @default.
- W2895024963 cites W2127376784 @default.
- W2895024963 cites W2132116135 @default.
- W2895024963 cites W2132515211 @default.
- W2895024963 cites W2145803225 @default.
- W2895024963 cites W2149402078 @default.
- W2895024963 cites W2163105710 @default.
- W2895024963 cites W2433693374 @default.
- W2895024963 cites W2586834759 @default.
- W2895024963 cites W84676310 @default.
- W2895024963 doi "https://doi.org/10.1155/2018/6319879" @default.
- W2895024963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6196995" @default.
- W2895024963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30402488" @default.
- W2895024963 hasPublicationYear "2018" @default.
- W2895024963 type Work @default.
- W2895024963 sameAs 2895024963 @default.
- W2895024963 citedByCount "9" @default.
- W2895024963 countsByYear W28950249632020 @default.
- W2895024963 countsByYear W28950249632021 @default.
- W2895024963 countsByYear W28950249632022 @default.
- W2895024963 crossrefType "journal-article" @default.
- W2895024963 hasAuthorship W2895024963A5017750410 @default.
- W2895024963 hasAuthorship W2895024963A5025117178 @default.
- W2895024963 hasAuthorship W2895024963A5025711005 @default.
- W2895024963 hasAuthorship W2895024963A5040158860 @default.
- W2895024963 hasBestOaLocation W28950249631 @default.
- W2895024963 hasConcept C115961682 @default.
- W2895024963 hasConcept C124504099 @default.
- W2895024963 hasConcept C125269122 @default.
- W2895024963 hasConcept C134306372 @default.
- W2895024963 hasConcept C153008295 @default.
- W2895024963 hasConcept C153180895 @default.
- W2895024963 hasConcept C154945302 @default.
- W2895024963 hasConcept C31972630 @default.
- W2895024963 hasConcept C33923547 @default.
- W2895024963 hasConcept C41008148 @default.
- W2895024963 hasConcept C62354387 @default.
- W2895024963 hasConcept C89600930 @default.
- W2895024963 hasConcept C99498987 @default.
- W2895024963 hasConceptScore W2895024963C115961682 @default.
- W2895024963 hasConceptScore W2895024963C124504099 @default.
- W2895024963 hasConceptScore W2895024963C125269122 @default.
- W2895024963 hasConceptScore W2895024963C134306372 @default.
- W2895024963 hasConceptScore W2895024963C153008295 @default.
- W2895024963 hasConceptScore W2895024963C153180895 @default.
- W2895024963 hasConceptScore W2895024963C154945302 @default.
- W2895024963 hasConceptScore W2895024963C31972630 @default.
- W2895024963 hasConceptScore W2895024963C33923547 @default.
- W2895024963 hasConceptScore W2895024963C41008148 @default.
- W2895024963 hasConceptScore W2895024963C62354387 @default.
- W2895024963 hasConceptScore W2895024963C89600930 @default.
- W2895024963 hasConceptScore W2895024963C99498987 @default.
- W2895024963 hasLocation W28950249631 @default.
- W2895024963 hasLocation W28950249632 @default.
- W2895024963 hasLocation W28950249633 @default.
- W2895024963 hasLocation W28950249634 @default.
- W2895024963 hasOpenAccess W2895024963 @default.
- W2895024963 hasPrimaryLocation W28950249631 @default.
- W2895024963 hasRelatedWork W1631910785 @default.
- W2895024963 hasRelatedWork W1669643531 @default.
- W2895024963 hasRelatedWork W2008268297 @default.
- W2895024963 hasRelatedWork W2110230079 @default.
- W2895024963 hasRelatedWork W2117933325 @default.
- W2895024963 hasRelatedWork W2122581818 @default.
- W2895024963 hasRelatedWork W2159066190 @default.