Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896792008> ?p ?o ?g. }
- W2896792008 endingPage "351" @default.
- W2896792008 startingPage "339" @default.
- W2896792008 abstract "We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare challenge. Treatment is often through catheter ablation, which involves the targeted localized destruction of regions of the myocardium responsible for initiating or perpetuating the arrhythmia. Ablation targets are either anatomically defined, or identified based on their functional properties as determined through the analysis of contact intracardiac electrograms acquired with increasing spatial density by modern electroanatomic mapping systems. While numerous quantitative approaches have been investigated over the past decades for identifying these critical curative sites, few have provided a reliable and reproducible advance in success rates. Machine learning techniques, including recent deep-learning approaches, offer a potential route to gaining new insight from this wealth of highly complex spatio-temporal information that existing methods struggle to analyse. Coupled with predictive modelling, these techniques offer exciting opportunities to advance the field and produce more accurate diagnoses and robust personalised treatment. We outline some of these methods and illustrate their use in making predictions from the contact electrogram and augmenting predictive modelling tools, both by more rapidly predicting future states of the system and by inferring the parameters of these models from experimental observations." @default.
- W2896792008 created "2018-10-26" @default.
- W2896792008 creator A5011042279 @default.
- W2896792008 creator A5012705709 @default.
- W2896792008 creator A5027222571 @default.
- W2896792008 creator A5028157574 @default.
- W2896792008 creator A5041608246 @default.
- W2896792008 creator A5052522736 @default.
- W2896792008 creator A5075213080 @default.
- W2896792008 creator A5076680086 @default.
- W2896792008 creator A5090455006 @default.
- W2896792008 date "2019-01-01" @default.
- W2896792008 modified "2023-10-17" @default.
- W2896792008 title "Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling" @default.
- W2896792008 cites W1583406651 @default.
- W2896792008 cites W1780185704 @default.
- W2896792008 cites W1972119727 @default.
- W2896792008 cites W1977643020 @default.
- W2896792008 cites W1982880087 @default.
- W2896792008 cites W1985940938 @default.
- W2896792008 cites W1997277858 @default.
- W2896792008 cites W2003474735 @default.
- W2896792008 cites W2028870622 @default.
- W2896792008 cites W2032120615 @default.
- W2896792008 cites W2042673073 @default.
- W2896792008 cites W2044782059 @default.
- W2896792008 cites W2072026441 @default.
- W2896792008 cites W2073929559 @default.
- W2896792008 cites W2076360858 @default.
- W2896792008 cites W2078242986 @default.
- W2896792008 cites W2112091653 @default.
- W2896792008 cites W2121289914 @default.
- W2896792008 cites W2122111042 @default.
- W2896792008 cites W2130292558 @default.
- W2896792008 cites W2139212933 @default.
- W2896792008 cites W2144015117 @default.
- W2896792008 cites W2152246075 @default.
- W2896792008 cites W2160815625 @default.
- W2896792008 cites W2161023180 @default.
- W2896792008 cites W2163922914 @default.
- W2896792008 cites W2165006299 @default.
- W2896792008 cites W2169414580 @default.
- W2896792008 cites W2177870565 @default.
- W2896792008 cites W2214631210 @default.
- W2896792008 cites W2239693810 @default.
- W2896792008 cites W2335427637 @default.
- W2896792008 cites W2343116864 @default.
- W2896792008 cites W2367512715 @default.
- W2896792008 cites W2548919829 @default.
- W2896792008 cites W25713472 @default.
- W2896792008 cites W2604389867 @default.
- W2896792008 cites W2702581998 @default.
- W2896792008 cites W2736620193 @default.
- W2896792008 cites W2748902594 @default.
- W2896792008 cites W2765345495 @default.
- W2896792008 cites W2782496478 @default.
- W2896792008 cites W2790971290 @default.
- W2896792008 cites W2794550444 @default.
- W2896792008 cites W2796979148 @default.
- W2896792008 cites W2799394887 @default.
- W2896792008 cites W2801654021 @default.
- W2896792008 cites W2888118590 @default.
- W2896792008 cites W2908840847 @default.
- W2896792008 cites W2911964244 @default.
- W2896792008 cites W2919115771 @default.
- W2896792008 cites W2949631852 @default.
- W2896792008 cites W4212883601 @default.
- W2896792008 cites W639708223 @default.
- W2896792008 doi "https://doi.org/10.1016/j.compbiomed.2018.10.015" @default.
- W2896792008 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6334203" @default.
- W2896792008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30442428" @default.
- W2896792008 hasPublicationYear "2019" @default.
- W2896792008 type Work @default.
- W2896792008 sameAs 2896792008 @default.
- W2896792008 citedByCount "39" @default.
- W2896792008 countsByYear W28967920082018 @default.
- W2896792008 countsByYear W28967920082019 @default.
- W2896792008 countsByYear W28967920082020 @default.
- W2896792008 countsByYear W28967920082021 @default.
- W2896792008 countsByYear W28967920082022 @default.
- W2896792008 countsByYear W28967920082023 @default.
- W2896792008 crossrefType "journal-article" @default.
- W2896792008 hasAuthorship W2896792008A5011042279 @default.
- W2896792008 hasAuthorship W2896792008A5012705709 @default.
- W2896792008 hasAuthorship W2896792008A5027222571 @default.
- W2896792008 hasAuthorship W2896792008A5028157574 @default.
- W2896792008 hasAuthorship W2896792008A5041608246 @default.
- W2896792008 hasAuthorship W2896792008A5052522736 @default.
- W2896792008 hasAuthorship W2896792008A5075213080 @default.
- W2896792008 hasAuthorship W2896792008A5076680086 @default.
- W2896792008 hasAuthorship W2896792008A5090455006 @default.
- W2896792008 hasBestOaLocation W28967920081 @default.
- W2896792008 hasConcept C108583219 @default.
- W2896792008 hasConcept C119857082 @default.
- W2896792008 hasConcept C126322002 @default.
- W2896792008 hasConcept C126838900 @default.
- W2896792008 hasConcept C154945302 @default.
- W2896792008 hasConcept C164705383 @default.