Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897069287> ?p ?o ?g. }
- W2897069287 endingPage "342" @default.
- W2897069287 startingPage "325" @default.
- W2897069287 abstract "Traditional Discrete Particle Methods (DPM) such as the Euler–Lagrange approaches for modeling atomization, even if widely used in technical literature, are not suitable in the near injector region. Indeed, the first step of atomization process is to separate the continuous liquid phase in a set of individual liquid parcels, the so-called primary break-up. Describing two-phase flow by DPM is to define a carrier phase and a discrete phase, hence they cannot be used for primary breakup. On the other hand, full scale simulations (direct simulation of the dynamic DNS, and interface capturing method ICM) are powerful numerical tools to study atomization, however, computational costs limit their application to academic cases for understanding and complementing partial experimental data. In an industrial environment, models that are computationally less demanding and still accurate enough are required to meet new challenges of fuel consumption and pollutant reduction. Application of DNS-ICM methods without fairly enough resolution to solve all length scales are currently used for industrial purposes. Nevertheless, effects of unresolved scales are generally cast aside. The Euler-Lagrange Spray Atomization model family (namely, ELSA, also called, Σ−Y or Ω−Y) developed by Vallet and Borghi pioneering work (Vallet and Borghi, 1999a), and (Vallet et al., 2001), at the contrary aims to model those unresolved scales. This approach is actually complementary to DNS-ICM method since the importance of the unresolved term depends directly on mesh resolution. For full interface resolution, the unclosed terms are negligible, except in the far-field spray when the unresolved terms become dominant. Depending on the complexity of the flow and the available computational resources, a Large Eddy Simulation (LES) formalism could be employed as modeling approach. This work focus on the two main terms that drive these different modeling approaches namely the sub-grid turbulent liquid flux and the unresolved interface. Thanks to the open source library OpenFoam® (Weller et al., 1998) this work is an attempt to review and to release an adapted modeling strategy depending on the available mesh resolution. For validation, these solvers are tested against realistic experimental data to see the overall effect of each model proposal. It was found that both showed good agreement with experiments, and particularly under Diesel Spray injection conditions, the sub-grid scales represent the major driving force, thus diffusing the interface rapidly at the exit of the injector." @default.
- W2897069287 created "2018-10-26" @default.
- W2897069287 creator A5012068586 @default.
- W2897069287 creator A5015105233 @default.
- W2897069287 creator A5026241546 @default.
- W2897069287 creator A5026828630 @default.
- W2897069287 creator A5026983962 @default.
- W2897069287 creator A5049839206 @default.
- W2897069287 date "2019-04-01" @default.
- W2897069287 modified "2023-10-15" @default.
- W2897069287 title "Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors" @default.
- W2897069287 cites W1553608069 @default.
- W2897069287 cites W1970881453 @default.
- W2897069287 cites W1988075634 @default.
- W2897069287 cites W1993122356 @default.
- W2897069287 cites W1999319321 @default.
- W2897069287 cites W2005027835 @default.
- W2897069287 cites W2015437704 @default.
- W2897069287 cites W2018214096 @default.
- W2897069287 cites W2021517416 @default.
- W2897069287 cites W2023248330 @default.
- W2897069287 cites W2029310239 @default.
- W2897069287 cites W2032073910 @default.
- W2897069287 cites W2044048010 @default.
- W2897069287 cites W2045545335 @default.
- W2897069287 cites W2045618004 @default.
- W2897069287 cites W2047830419 @default.
- W2897069287 cites W2049190161 @default.
- W2897069287 cites W2052973527 @default.
- W2897069287 cites W2058435561 @default.
- W2897069287 cites W2060786385 @default.
- W2897069287 cites W2061614228 @default.
- W2897069287 cites W2063145125 @default.
- W2897069287 cites W2069166573 @default.
- W2897069287 cites W2089342178 @default.
- W2897069287 cites W2089972923 @default.
- W2897069287 cites W2105450392 @default.
- W2897069287 cites W2109216682 @default.
- W2897069287 cites W2110187357 @default.
- W2897069287 cites W2114549899 @default.
- W2897069287 cites W2152394886 @default.
- W2897069287 cites W2157341450 @default.
- W2897069287 cites W2167849182 @default.
- W2897069287 cites W2168795429 @default.
- W2897069287 cites W2200256347 @default.
- W2897069287 cites W2277080037 @default.
- W2897069287 cites W2535818069 @default.
- W2897069287 cites W2587108696 @default.
- W2897069287 cites W2606028009 @default.
- W2897069287 cites W2682459478 @default.
- W2897069287 cites W2767325365 @default.
- W2897069287 cites W3106467376 @default.
- W2897069287 cites W323536346 @default.
- W2897069287 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.009" @default.
- W2897069287 hasPublicationYear "2019" @default.
- W2897069287 type Work @default.
- W2897069287 sameAs 2897069287 @default.
- W2897069287 citedByCount "36" @default.
- W2897069287 countsByYear W28970692872019 @default.
- W2897069287 countsByYear W28970692872020 @default.
- W2897069287 countsByYear W28970692872021 @default.
- W2897069287 countsByYear W28970692872022 @default.
- W2897069287 countsByYear W28970692872023 @default.
- W2897069287 crossrefType "journal-article" @default.
- W2897069287 hasAuthorship W2897069287A5012068586 @default.
- W2897069287 hasAuthorship W2897069287A5015105233 @default.
- W2897069287 hasAuthorship W2897069287A5026241546 @default.
- W2897069287 hasAuthorship W2897069287A5026828630 @default.
- W2897069287 hasAuthorship W2897069287A5026983962 @default.
- W2897069287 hasAuthorship W2897069287A5049839206 @default.
- W2897069287 hasBestOaLocation W28970692871 @default.
- W2897069287 hasConcept C111335779 @default.
- W2897069287 hasConcept C113843644 @default.
- W2897069287 hasConcept C121332964 @default.
- W2897069287 hasConcept C129307140 @default.
- W2897069287 hasConcept C157915830 @default.
- W2897069287 hasConcept C1633027 @default.
- W2897069287 hasConcept C199360897 @default.
- W2897069287 hasConcept C2524010 @default.
- W2897069287 hasConcept C2777871205 @default.
- W2897069287 hasConcept C2778770139 @default.
- W2897069287 hasConcept C2780916432 @default.
- W2897069287 hasConcept C28826006 @default.
- W2897069287 hasConcept C33923547 @default.
- W2897069287 hasConcept C41008148 @default.
- W2897069287 hasConcept C44154836 @default.
- W2897069287 hasConcept C57879066 @default.
- W2897069287 hasConceptScore W2897069287C111335779 @default.
- W2897069287 hasConceptScore W2897069287C113843644 @default.
- W2897069287 hasConceptScore W2897069287C121332964 @default.
- W2897069287 hasConceptScore W2897069287C129307140 @default.
- W2897069287 hasConceptScore W2897069287C157915830 @default.
- W2897069287 hasConceptScore W2897069287C1633027 @default.
- W2897069287 hasConceptScore W2897069287C199360897 @default.
- W2897069287 hasConceptScore W2897069287C2524010 @default.
- W2897069287 hasConceptScore W2897069287C2777871205 @default.
- W2897069287 hasConceptScore W2897069287C2778770139 @default.
- W2897069287 hasConceptScore W2897069287C2780916432 @default.