Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898081700> ?p ?o ?g. }
- W2898081700 abstract "Automated app review analysis is an important avenue for extracting a variety of requirements-related information. Typically, a first step toward performing such analysis is preparing a training dataset, where developers (experts) identify a set of reviews and, manually, annotate them according to a given task. Having sufficiently large training data is important for both achieving a high prediction accuracy and avoiding overfitting. Given millions of reviews, preparing a training set is laborious. We propose to incorporate active learning, a machine learning paradigm, in order to reduce the human effort involved in app review analysis. Our app review classification framework exploits three active learning strategies based on uncertainty sampling. We apply these strategies to an existing dataset of 4,400 app reviews for classifying app reviews as features, bugs, rating, and user experience. We find that active learning, compared to a training dataset chosen randomly, yields a significantly higher prediction accuracy under multiple scenarios." @default.
- W2898081700 created "2018-10-26" @default.
- W2898081700 creator A5024218069 @default.
- W2898081700 creator A5039587200 @default.
- W2898081700 creator A5058666752 @default.
- W2898081700 creator A5079664190 @default.
- W2898081700 date "2018-08-01" @default.
- W2898081700 modified "2023-10-16" @default.
- W2898081700 title "App Review Analysis Via Active Learning: Reducing Supervision Effort without Compromising Classification Accuracy" @default.
- W2898081700 cites W1580375566 @default.
- W2898081700 cites W1967256553 @default.
- W2898081700 cites W1991867644 @default.
- W2898081700 cites W2052760504 @default.
- W2898081700 cites W2069287718 @default.
- W2898081700 cites W2074975950 @default.
- W2898081700 cites W2085465189 @default.
- W2898081700 cites W2106447856 @default.
- W2898081700 cites W2112143630 @default.
- W2898081700 cites W2117763124 @default.
- W2898081700 cites W2169863116 @default.
- W2898081700 cites W2171671120 @default.
- W2898081700 cites W2243129849 @default.
- W2898081700 cites W2266696196 @default.
- W2898081700 cites W2344561138 @default.
- W2898081700 cites W2362569215 @default.
- W2898081700 cites W2389246322 @default.
- W2898081700 cites W2408181256 @default.
- W2898081700 cites W2514090203 @default.
- W2898081700 cites W2547513165 @default.
- W2898081700 cites W2560305929 @default.
- W2898081700 cites W2560350721 @default.
- W2898081700 cites W2598457223 @default.
- W2898081700 cites W2618807062 @default.
- W2898081700 cites W2756686115 @default.
- W2898081700 cites W2758181130 @default.
- W2898081700 cites W2759603254 @default.
- W2898081700 cites W4210997624 @default.
- W2898081700 cites W4236456746 @default.
- W2898081700 cites W4240808027 @default.
- W2898081700 cites W4241929008 @default.
- W2898081700 cites W4298132949 @default.
- W2898081700 doi "https://doi.org/10.1109/re.2018.00026" @default.
- W2898081700 hasPublicationYear "2018" @default.
- W2898081700 type Work @default.
- W2898081700 sameAs 2898081700 @default.
- W2898081700 citedByCount "35" @default.
- W2898081700 countsByYear W28980817002019 @default.
- W2898081700 countsByYear W28980817002020 @default.
- W2898081700 countsByYear W28980817002021 @default.
- W2898081700 countsByYear W28980817002022 @default.
- W2898081700 countsByYear W28980817002023 @default.
- W2898081700 crossrefType "proceedings-article" @default.
- W2898081700 hasAuthorship W2898081700A5024218069 @default.
- W2898081700 hasAuthorship W2898081700A5039587200 @default.
- W2898081700 hasAuthorship W2898081700A5058666752 @default.
- W2898081700 hasAuthorship W2898081700A5079664190 @default.
- W2898081700 hasBestOaLocation W28980817002 @default.
- W2898081700 hasConcept C119857082 @default.
- W2898081700 hasConcept C124101348 @default.
- W2898081700 hasConcept C127413603 @default.
- W2898081700 hasConcept C136197465 @default.
- W2898081700 hasConcept C154945302 @default.
- W2898081700 hasConcept C165696696 @default.
- W2898081700 hasConcept C177264268 @default.
- W2898081700 hasConcept C199360897 @default.
- W2898081700 hasConcept C201995342 @default.
- W2898081700 hasConcept C22019652 @default.
- W2898081700 hasConcept C2780451532 @default.
- W2898081700 hasConcept C38652104 @default.
- W2898081700 hasConcept C41008148 @default.
- W2898081700 hasConcept C50644808 @default.
- W2898081700 hasConcept C51632099 @default.
- W2898081700 hasConcept C77967617 @default.
- W2898081700 hasConceptScore W2898081700C119857082 @default.
- W2898081700 hasConceptScore W2898081700C124101348 @default.
- W2898081700 hasConceptScore W2898081700C127413603 @default.
- W2898081700 hasConceptScore W2898081700C136197465 @default.
- W2898081700 hasConceptScore W2898081700C154945302 @default.
- W2898081700 hasConceptScore W2898081700C165696696 @default.
- W2898081700 hasConceptScore W2898081700C177264268 @default.
- W2898081700 hasConceptScore W2898081700C199360897 @default.
- W2898081700 hasConceptScore W2898081700C201995342 @default.
- W2898081700 hasConceptScore W2898081700C22019652 @default.
- W2898081700 hasConceptScore W2898081700C2780451532 @default.
- W2898081700 hasConceptScore W2898081700C38652104 @default.
- W2898081700 hasConceptScore W2898081700C41008148 @default.
- W2898081700 hasConceptScore W2898081700C50644808 @default.
- W2898081700 hasConceptScore W2898081700C51632099 @default.
- W2898081700 hasConceptScore W2898081700C77967617 @default.
- W2898081700 hasLocation W28980817001 @default.
- W2898081700 hasLocation W28980817002 @default.
- W2898081700 hasOpenAccess W2898081700 @default.
- W2898081700 hasPrimaryLocation W28980817001 @default.
- W2898081700 hasRelatedWork W1996541855 @default.
- W2898081700 hasRelatedWork W2052534308 @default.
- W2898081700 hasRelatedWork W2346074333 @default.
- W2898081700 hasRelatedWork W2985459377 @default.
- W2898081700 hasRelatedWork W2989932438 @default.
- W2898081700 hasRelatedWork W3011996705 @default.
- W2898081700 hasRelatedWork W3099765033 @default.