Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898264679> ?p ?o ?g. }
- W2898264679 endingPage "281" @default.
- W2898264679 startingPage "177" @default.
- W2898264679 abstract "This glossary contains an annotated listing of some 300 parameters of graphs, together with their definitions, and, for most of these, a reference to the authors who introduced them. Let G = (V, E) be an undirected graph having order n = |V | vertices and size m = |E| edges. Two graphs G and H are isomorphic, denoted G ≃ H, if there exists a bijection ϕ : V (G) → V (H) such that two vertices u and v are adjacent in G if and only if the two vertices ϕ(u) and ϕ(v) are adjacent in H. For the purposes of this paper, we shall say that a parameter of a graph G is any integer-valued function $$f: mathcal {G} rightarrow mathcal {Z}$$ from the class of all finite graphs $$mathcal {G}$$ to the integers $$mathcal {Z}$$ , such that for any two graphs G and H, if G is isomorphic to H then f(G) = f(H). This glossary also contains a listing of some 70 conjectures related to these parameters, more than 26 new parameters and open problem areas for study, and some 600 references to papers in which these parameters were introduced and then studied." @default.
- W2898264679 created "2018-11-02" @default.
- W2898264679 creator A5001070487 @default.
- W2898264679 creator A5031558727 @default.
- W2898264679 creator A5070458571 @default.
- W2898264679 creator A5089473322 @default.
- W2898264679 date "2018-01-01" @default.
- W2898264679 modified "2023-10-06" @default.
- W2898264679 title "An Annotated Glossary of Graph Theory Parameters, with Conjectures" @default.
- W2898264679 cites W1011823202 @default.
- W2898264679 cites W1033655406 @default.
- W2898264679 cites W122020994 @default.
- W2898264679 cites W1480761986 @default.
- W2898264679 cites W1480991993 @default.
- W2898264679 cites W1483461381 @default.
- W2898264679 cites W1495730785 @default.
- W2898264679 cites W1516924510 @default.
- W2898264679 cites W1520619927 @default.
- W2898264679 cites W1526979981 @default.
- W2898264679 cites W1557513888 @default.
- W2898264679 cites W1558198855 @default.
- W2898264679 cites W1562917120 @default.
- W2898264679 cites W1564921898 @default.
- W2898264679 cites W1565712860 @default.
- W2898264679 cites W1565752646 @default.
- W2898264679 cites W1589406273 @default.
- W2898264679 cites W1608829409 @default.
- W2898264679 cites W1641711201 @default.
- W2898264679 cites W1786780942 @default.
- W2898264679 cites W1798981749 @default.
- W2898264679 cites W180344153 @default.
- W2898264679 cites W1832228128 @default.
- W2898264679 cites W1855706715 @default.
- W2898264679 cites W1861659322 @default.
- W2898264679 cites W1866996682 @default.
- W2898264679 cites W1909115871 @default.
- W2898264679 cites W1909946366 @default.
- W2898264679 cites W1913481034 @default.
- W2898264679 cites W1928275852 @default.
- W2898264679 cites W1964114184 @default.
- W2898264679 cites W1964700291 @default.
- W2898264679 cites W1965187305 @default.
- W2898264679 cites W1965856629 @default.
- W2898264679 cites W1967318939 @default.
- W2898264679 cites W1967490291 @default.
- W2898264679 cites W1967557055 @default.
- W2898264679 cites W1967979192 @default.
- W2898264679 cites W1973107135 @default.
- W2898264679 cites W1974410371 @default.
- W2898264679 cites W1975039515 @default.
- W2898264679 cites W1975099798 @default.
- W2898264679 cites W1975858062 @default.
- W2898264679 cites W1976227376 @default.
- W2898264679 cites W1977080610 @default.
- W2898264679 cites W1979719950 @default.
- W2898264679 cites W1980302408 @default.
- W2898264679 cites W1981781158 @default.
- W2898264679 cites W1982886989 @default.
- W2898264679 cites W1983030532 @default.
- W2898264679 cites W1984228559 @default.
- W2898264679 cites W1984825279 @default.
- W2898264679 cites W1984971264 @default.
- W2898264679 cites W1986730114 @default.
- W2898264679 cites W1987646879 @default.
- W2898264679 cites W1987801337 @default.
- W2898264679 cites W1987959163 @default.
- W2898264679 cites W1988133548 @default.
- W2898264679 cites W1988737472 @default.
- W2898264679 cites W1988825590 @default.
- W2898264679 cites W1989452671 @default.
- W2898264679 cites W1989933315 @default.
- W2898264679 cites W1990051823 @default.
- W2898264679 cites W1990218616 @default.
- W2898264679 cites W1990901538 @default.
- W2898264679 cites W1990941137 @default.
- W2898264679 cites W1990953773 @default.
- W2898264679 cites W1991445030 @default.
- W2898264679 cites W1992030522 @default.
- W2898264679 cites W1992279645 @default.
- W2898264679 cites W1992650104 @default.
- W2898264679 cites W1992868998 @default.
- W2898264679 cites W1993155410 @default.
- W2898264679 cites W1993232451 @default.
- W2898264679 cites W1993409199 @default.
- W2898264679 cites W1994701070 @default.
- W2898264679 cites W1995135963 @default.
- W2898264679 cites W1995168815 @default.
- W2898264679 cites W1995359535 @default.
- W2898264679 cites W1996855544 @default.
- W2898264679 cites W1998431832 @default.
- W2898264679 cites W1999453762 @default.
- W2898264679 cites W1999957357 @default.
- W2898264679 cites W2000462523 @default.
- W2898264679 cites W2000838329 @default.
- W2898264679 cites W2000920682 @default.
- W2898264679 cites W2001161770 @default.
- W2898264679 cites W2001321001 @default.
- W2898264679 cites W2001588067 @default.