Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898491100> ?p ?o ?g. }
- W2898491100 endingPage "519" @default.
- W2898491100 startingPage "507" @default.
- W2898491100 abstract "Estimation of end-to-end network traffic plays an important role in traffic engineering and network planning. The direct measurement of a network's traffic matrix consumes large amounts of network resources and is thus impractical in most cases. How to accurately construct traffic matrix remains a great challenge. This paper studies end-to-end network traffic reconstruction in large-scale networks. Applying compressive sensing theory, we propose a novel reconstruction method for end-to-end traffic flows. First, the direct measurement of partial Origin-Destination (OD) flows is determined by random measurement matrix, providing partial measurements. Then, we use the K-SVD approach to obtain a sparse matrix. Combined with compressive sensing, this partially known OD flow matrix can be used to recover the entire end-to-end network traffic matrix. Simulation results show that the proposed method can reconstruct end-to-end network traffic with a high degree of accuracy. Moreover, in comparison with previous methods, our approach exhibits a significant performance improvement." @default.
- W2898491100 created "2018-11-02" @default.
- W2898491100 creator A5025698632 @default.
- W2898491100 creator A5046732096 @default.
- W2898491100 creator A5046967955 @default.
- W2898491100 creator A5079301418 @default.
- W2898491100 date "2020-01-01" @default.
- W2898491100 modified "2023-10-14" @default.
- W2898491100 title "A Compressive Sensing-Based Approach to End-to-End Network Traffic Reconstruction" @default.
- W2898491100 cites W1965449814 @default.
- W2898491100 cites W1966875267 @default.
- W2898491100 cites W1998182736 @default.
- W2898491100 cites W1998989882 @default.
- W2898491100 cites W2047627502 @default.
- W2898491100 cites W2058737544 @default.
- W2898491100 cites W2069354103 @default.
- W2898491100 cites W2102247879 @default.
- W2898491100 cites W2105877514 @default.
- W2898491100 cites W2107655596 @default.
- W2898491100 cites W2109357213 @default.
- W2898491100 cites W2115829001 @default.
- W2898491100 cites W2117368434 @default.
- W2898491100 cites W2127271355 @default.
- W2898491100 cites W2127936354 @default.
- W2898491100 cites W2128478380 @default.
- W2898491100 cites W2141349357 @default.
- W2898491100 cites W2158248787 @default.
- W2898491100 cites W2160547390 @default.
- W2898491100 cites W2171676739 @default.
- W2898491100 cites W2430855376 @default.
- W2898491100 cites W2507205508 @default.
- W2898491100 cites W2511250566 @default.
- W2898491100 cites W2526375869 @default.
- W2898491100 cites W2528323426 @default.
- W2898491100 cites W2530269079 @default.
- W2898491100 cites W2753266903 @default.
- W2898491100 cites W2761629823 @default.
- W2898491100 cites W2781703105 @default.
- W2898491100 cites W2781917523 @default.
- W2898491100 cites W2800941002 @default.
- W2898491100 cites W2999389558 @default.
- W2898491100 cites W2999946671 @default.
- W2898491100 cites W3102933607 @default.
- W2898491100 cites W4246071789 @default.
- W2898491100 cites W4250955649 @default.
- W2898491100 doi "https://doi.org/10.1109/tnse.2018.2877597" @default.
- W2898491100 hasPublicationYear "2020" @default.
- W2898491100 type Work @default.
- W2898491100 sameAs 2898491100 @default.
- W2898491100 citedByCount "110" @default.
- W2898491100 countsByYear W28984911002019 @default.
- W2898491100 countsByYear W28984911002020 @default.
- W2898491100 countsByYear W28984911002021 @default.
- W2898491100 countsByYear W28984911002022 @default.
- W2898491100 countsByYear W28984911002023 @default.
- W2898491100 crossrefType "journal-article" @default.
- W2898491100 hasAuthorship W2898491100A5025698632 @default.
- W2898491100 hasAuthorship W2898491100A5046732096 @default.
- W2898491100 hasAuthorship W2898491100A5046967955 @default.
- W2898491100 hasAuthorship W2898491100A5079301418 @default.
- W2898491100 hasConcept C106487976 @default.
- W2898491100 hasConcept C11413529 @default.
- W2898491100 hasConcept C124101348 @default.
- W2898491100 hasConcept C124851039 @default.
- W2898491100 hasConcept C158379750 @default.
- W2898491100 hasConcept C159985019 @default.
- W2898491100 hasConcept C16160715 @default.
- W2898491100 hasConcept C176715033 @default.
- W2898491100 hasConcept C192562407 @default.
- W2898491100 hasConcept C201100257 @default.
- W2898491100 hasConcept C207512268 @default.
- W2898491100 hasConcept C31258907 @default.
- W2898491100 hasConcept C41008148 @default.
- W2898491100 hasConcept C74296488 @default.
- W2898491100 hasConcept C79403827 @default.
- W2898491100 hasConcept C81877898 @default.
- W2898491100 hasConcept C94168897 @default.
- W2898491100 hasConceptScore W2898491100C106487976 @default.
- W2898491100 hasConceptScore W2898491100C11413529 @default.
- W2898491100 hasConceptScore W2898491100C124101348 @default.
- W2898491100 hasConceptScore W2898491100C124851039 @default.
- W2898491100 hasConceptScore W2898491100C158379750 @default.
- W2898491100 hasConceptScore W2898491100C159985019 @default.
- W2898491100 hasConceptScore W2898491100C16160715 @default.
- W2898491100 hasConceptScore W2898491100C176715033 @default.
- W2898491100 hasConceptScore W2898491100C192562407 @default.
- W2898491100 hasConceptScore W2898491100C201100257 @default.
- W2898491100 hasConceptScore W2898491100C207512268 @default.
- W2898491100 hasConceptScore W2898491100C31258907 @default.
- W2898491100 hasConceptScore W2898491100C41008148 @default.
- W2898491100 hasConceptScore W2898491100C74296488 @default.
- W2898491100 hasConceptScore W2898491100C79403827 @default.
- W2898491100 hasConceptScore W2898491100C81877898 @default.
- W2898491100 hasConceptScore W2898491100C94168897 @default.
- W2898491100 hasFunder F4320321001 @default.
- W2898491100 hasFunder F4320335787 @default.
- W2898491100 hasIssue "1" @default.
- W2898491100 hasLocation W28984911001 @default.