Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898893910> ?p ?o ?g. }
- W2898893910 endingPage "1789" @default.
- W2898893910 startingPage "1780" @default.
- W2898893910 abstract "This paper studies the distributed average tracking (DAT) problem for multiple reference signals described by the second-order nonlinear dynamical systems. Leveraging the state-dependent gain design and the adaptive control approaches, a couple of DAT algorithms are developed in this paper, which are named finite-time and adaptive-gain DAT algorithms. Based on the finite-time one, the states of the physical agents in this paper can track the average of the time-varying reference signals within a finite settling time. Furthermore, the finite settling time is also estimated by considering a well-designed Lyapunov function in this paper. Compared with asymptotical DAT algorithms, the proposed finite-time algorithm not only solve finite-time DAT problems but also ensure states of physical agents to achieve an accurate average of the multiple signals. Then, an adaptive-gain DAT algorithm is designed. Based on the adaptive-gain one, the DAT problem is solved without global information. Thus, it is fully distributed. Finally, numerical simulations show the effectiveness of the theoretical results." @default.
- W2898893910 created "2018-11-09" @default.
- W2898893910 creator A5000545560 @default.
- W2898893910 creator A5040088510 @default.
- W2898893910 creator A5058898893 @default.
- W2898893910 creator A5074290686 @default.
- W2898893910 date "2019-06-01" @default.
- W2898893910 modified "2023-10-17" @default.
- W2898893910 title "Finite-Time Distributed Average Tracking for Second-Order Nonlinear Systems" @default.
- W2898893910 cites W1906374873 @default.
- W2898893910 cites W1964453066 @default.
- W2898893910 cites W1970786657 @default.
- W2898893910 cites W1973963158 @default.
- W2898893910 cites W1984651876 @default.
- W2898893910 cites W1989054487 @default.
- W2898893910 cites W2002257972 @default.
- W2898893910 cites W2041328720 @default.
- W2898893910 cites W2050090436 @default.
- W2898893910 cites W2065029123 @default.
- W2898893910 cites W2068657768 @default.
- W2898893910 cites W2080817687 @default.
- W2898893910 cites W2092841641 @default.
- W2898893910 cites W2096108718 @default.
- W2898893910 cites W2099175737 @default.
- W2898893910 cites W2100431085 @default.
- W2898893910 cites W2100935517 @default.
- W2898893910 cites W2111838183 @default.
- W2898893910 cites W2130773823 @default.
- W2898893910 cites W2137088757 @default.
- W2898893910 cites W2160643434 @default.
- W2898893910 cites W2192152407 @default.
- W2898893910 cites W2300802593 @default.
- W2898893910 cites W2437958156 @default.
- W2898893910 cites W2516079600 @default.
- W2898893910 cites W2528815323 @default.
- W2898893910 cites W2581034300 @default.
- W2898893910 cites W2588148443 @default.
- W2898893910 cites W2768166594 @default.
- W2898893910 cites W2782559590 @default.
- W2898893910 cites W2889537839 @default.
- W2898893910 cites W2964110462 @default.
- W2898893910 cites W4238591275 @default.
- W2898893910 cites W4293078920 @default.
- W2898893910 doi "https://doi.org/10.1109/tnnls.2018.2873676" @default.
- W2898893910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30371392" @default.
- W2898893910 hasPublicationYear "2019" @default.
- W2898893910 type Work @default.
- W2898893910 sameAs 2898893910 @default.
- W2898893910 citedByCount "31" @default.
- W2898893910 countsByYear W28988939102019 @default.
- W2898893910 countsByYear W28988939102020 @default.
- W2898893910 countsByYear W28988939102021 @default.
- W2898893910 countsByYear W28988939102022 @default.
- W2898893910 countsByYear W28988939102023 @default.
- W2898893910 crossrefType "journal-article" @default.
- W2898893910 hasAuthorship W2898893910A5000545560 @default.
- W2898893910 hasAuthorship W2898893910A5040088510 @default.
- W2898893910 hasAuthorship W2898893910A5058898893 @default.
- W2898893910 hasAuthorship W2898893910A5074290686 @default.
- W2898893910 hasConcept C11413529 @default.
- W2898893910 hasConcept C121332964 @default.
- W2898893910 hasConcept C126255220 @default.
- W2898893910 hasConcept C127413603 @default.
- W2898893910 hasConcept C133731056 @default.
- W2898893910 hasConcept C14781684 @default.
- W2898893910 hasConcept C154945302 @default.
- W2898893910 hasConcept C15744967 @default.
- W2898893910 hasConcept C158622935 @default.
- W2898893910 hasConcept C160030872 @default.
- W2898893910 hasConcept C19417346 @default.
- W2898893910 hasConcept C2775924081 @default.
- W2898893910 hasConcept C2775936607 @default.
- W2898893910 hasConcept C33923547 @default.
- W2898893910 hasConcept C41008148 @default.
- W2898893910 hasConcept C47446073 @default.
- W2898893910 hasConcept C60640748 @default.
- W2898893910 hasConcept C62520636 @default.
- W2898893910 hasConceptScore W2898893910C11413529 @default.
- W2898893910 hasConceptScore W2898893910C121332964 @default.
- W2898893910 hasConceptScore W2898893910C126255220 @default.
- W2898893910 hasConceptScore W2898893910C127413603 @default.
- W2898893910 hasConceptScore W2898893910C133731056 @default.
- W2898893910 hasConceptScore W2898893910C14781684 @default.
- W2898893910 hasConceptScore W2898893910C154945302 @default.
- W2898893910 hasConceptScore W2898893910C15744967 @default.
- W2898893910 hasConceptScore W2898893910C158622935 @default.
- W2898893910 hasConceptScore W2898893910C160030872 @default.
- W2898893910 hasConceptScore W2898893910C19417346 @default.
- W2898893910 hasConceptScore W2898893910C2775924081 @default.
- W2898893910 hasConceptScore W2898893910C2775936607 @default.
- W2898893910 hasConceptScore W2898893910C33923547 @default.
- W2898893910 hasConceptScore W2898893910C41008148 @default.
- W2898893910 hasConceptScore W2898893910C47446073 @default.
- W2898893910 hasConceptScore W2898893910C60640748 @default.
- W2898893910 hasConceptScore W2898893910C62520636 @default.
- W2898893910 hasFunder F4320321001 @default.
- W2898893910 hasFunder F4320321543 @default.
- W2898893910 hasFunder F4320322666 @default.