Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901566770> ?p ?o ?g. }
- W2901566770 endingPage "2557" @default.
- W2901566770 startingPage "2551" @default.
- W2901566770 abstract "Molecular dynamics (MD) simulations are widely used to explore the conformational space of biological macromolecules. Advances in hardware, as well as in methods, make the generation of large and complex MD datasets much more common. Although different clustering and dimensionality reduction methods have been applied to MD simulations, there remains a need for improved strategies that handle nonlinear data and/or can be applied to very large datasets. We present an original implementation of the pivot‐based version of the stochastic proximity embedding method aimed at large MD datasets using the dihedral distance as a metric. The advantages of the algorithm in terms of data storage and computational efficiency are presented, as well as the implementation realized. Application and testing through the analysis of a 200 ns accelerated MD simulation of a 35‐residue villin headpiece is discussed. Analysis of the simulation shows the promise of this method to organize large conformational ensembles. © 2018 Wiley Periodicals, Inc." @default.
- W2901566770 created "2018-11-29" @default.
- W2901566770 creator A5005345147 @default.
- W2901566770 creator A5047743339 @default.
- W2901566770 creator A5090448722 @default.
- W2901566770 date "2018-11-15" @default.
- W2901566770 modified "2023-10-17" @default.
- W2901566770 title "Unrolr: Structural analysis of protein conformations using stochastic proximity embedding" @default.
- W2901566770 cites W1898130445 @default.
- W2901566770 cites W1969256423 @default.
- W2901566770 cites W1974373855 @default.
- W2901566770 cites W1976499671 @default.
- W2901566770 cites W1980782498 @default.
- W2901566770 cites W1984222112 @default.
- W2901566770 cites W1985462363 @default.
- W2901566770 cites W2001141328 @default.
- W2901566770 cites W2002924489 @default.
- W2901566770 cites W2007304801 @default.
- W2901566770 cites W2013638340 @default.
- W2901566770 cites W2027408247 @default.
- W2901566770 cites W2028263411 @default.
- W2901566770 cites W2035687084 @default.
- W2901566770 cites W2036108598 @default.
- W2901566770 cites W2038458884 @default.
- W2901566770 cites W2038639590 @default.
- W2901566770 cites W2053186076 @default.
- W2901566770 cites W2056848862 @default.
- W2901566770 cites W2060757799 @default.
- W2901566770 cites W2063935375 @default.
- W2901566770 cites W2065281489 @default.
- W2901566770 cites W2067236515 @default.
- W2901566770 cites W2073954414 @default.
- W2901566770 cites W2075672585 @default.
- W2901566770 cites W2077412035 @default.
- W2901566770 cites W2078304042 @default.
- W2901566770 cites W2091701505 @default.
- W2901566770 cites W2096125044 @default.
- W2901566770 cites W2098055048 @default.
- W2901566770 cites W2100266218 @default.
- W2901566770 cites W2106140689 @default.
- W2901566770 cites W2110497788 @default.
- W2901566770 cites W2110898857 @default.
- W2901566770 cites W2113991454 @default.
- W2901566770 cites W2118416048 @default.
- W2901566770 cites W2130479394 @default.
- W2901566770 cites W2134738108 @default.
- W2901566770 cites W2149442325 @default.
- W2901566770 cites W2150981663 @default.
- W2901566770 cites W2152825437 @default.
- W2901566770 cites W2160451368 @default.
- W2901566770 cites W2161644181 @default.
- W2901566770 cites W2163915395 @default.
- W2901566770 cites W2168600513 @default.
- W2901566770 cites W2170711116 @default.
- W2901566770 cites W2178929802 @default.
- W2901566770 cites W2216435628 @default.
- W2901566770 cites W2294798173 @default.
- W2901566770 cites W2316045758 @default.
- W2901566770 cites W2512877791 @default.
- W2901566770 cites W2595314721 @default.
- W2901566770 cites W2964149432 @default.
- W2901566770 cites W3100810942 @default.
- W2901566770 doi "https://doi.org/10.1002/jcc.25599" @default.
- W2901566770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30447084" @default.
- W2901566770 hasPublicationYear "2018" @default.
- W2901566770 type Work @default.
- W2901566770 sameAs 2901566770 @default.
- W2901566770 citedByCount "2" @default.
- W2901566770 countsByYear W29015667702020 @default.
- W2901566770 countsByYear W29015667702021 @default.
- W2901566770 crossrefType "journal-article" @default.
- W2901566770 hasAuthorship W2901566770A5005345147 @default.
- W2901566770 hasAuthorship W2901566770A5047743339 @default.
- W2901566770 hasAuthorship W2901566770A5090448722 @default.
- W2901566770 hasConcept C111030470 @default.
- W2901566770 hasConcept C112887158 @default.
- W2901566770 hasConcept C11413529 @default.
- W2901566770 hasConcept C124101348 @default.
- W2901566770 hasConcept C147597530 @default.
- W2901566770 hasConcept C154945302 @default.
- W2901566770 hasConcept C162324750 @default.
- W2901566770 hasConcept C176217482 @default.
- W2901566770 hasConcept C178790620 @default.
- W2901566770 hasConcept C185592680 @default.
- W2901566770 hasConcept C21547014 @default.
- W2901566770 hasConcept C32909587 @default.
- W2901566770 hasConcept C41008148 @default.
- W2901566770 hasConcept C41608201 @default.
- W2901566770 hasConcept C59593255 @default.
- W2901566770 hasConcept C70518039 @default.
- W2901566770 hasConcept C73555534 @default.
- W2901566770 hasConcept C89025888 @default.
- W2901566770 hasConceptScore W2901566770C111030470 @default.
- W2901566770 hasConceptScore W2901566770C112887158 @default.
- W2901566770 hasConceptScore W2901566770C11413529 @default.
- W2901566770 hasConceptScore W2901566770C124101348 @default.
- W2901566770 hasConceptScore W2901566770C147597530 @default.
- W2901566770 hasConceptScore W2901566770C154945302 @default.