Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912462806> ?p ?o ?g. }
- W2912462806 endingPage "4555" @default.
- W2912462806 startingPage "4543" @default.
- W2912462806 abstract "Bearing faults are a major reason for the catastrophic breakdown of rotating machinery. Therefore, the early detection of bearing faults becomes a necessity to attain an uninterrupted and safe operation. This paper proposes a novel approach based on semi-nonnegative matrix factorization for detection of incipient faults in bearings. The semi-nonnegative matrix factorization algorithm creates a sparse, localized, part-based representation of the original data and assists to capture the fault information in bearing signals more effectively. Through semi-nonnegative matrix factorization, two bearing health indicators are derived to fulfill the desired purpose. In doing so, the paper tries to address two critical issues: (i) how to reduce the dimensionality of feature space (ii) how to obtain a definite range of the indicator between 0 and 1. Firstly, a set of time domain, frequency domain, and time–frequency domain features are extracted from the bearing vibration signals. Secondly, the feature dataset is utilized to train the semi-nonnegative matrix factorization algorithm which decomposes the training data matrix into two new matrices of lower ranks. Thirdly, the test feature vectors are projected onto these lower dimensional matrices to obtain two statistics called as square prediction error and Q 2 . Finally, the Bayesian inference approach is exploited to convert the two statistics into health indicators that have a fixed range between [0–1]. The application of the advocated technique on experimental bearing signals demonstrates that it can effectively predict the weak defects in bearings as well as performs better than the earlier methods like principal component analysis and locality preserving projections." @default.
- W2912462806 created "2019-02-21" @default.
- W2912462806 creator A5069250951 @default.
- W2912462806 creator A5073052010 @default.
- W2912462806 date "2019-02-04" @default.
- W2912462806 modified "2023-09-27" @default.
- W2912462806 title "The application of semi-nonnegative matrix factorization for detection of incipient faults in bearings" @default.
- W2912462806 cites W1143553410 @default.
- W2912462806 cites W1440202786 @default.
- W2912462806 cites W1711410201 @default.
- W2912462806 cites W1972937036 @default.
- W2912462806 cites W1982355325 @default.
- W2912462806 cites W2005483986 @default.
- W2912462806 cites W2037605702 @default.
- W2912462806 cites W2045186954 @default.
- W2912462806 cites W2059745395 @default.
- W2912462806 cites W2060540122 @default.
- W2912462806 cites W2081351273 @default.
- W2912462806 cites W2083879389 @default.
- W2912462806 cites W2148760425 @default.
- W2912462806 cites W2164134826 @default.
- W2912462806 cites W2168103112 @default.
- W2912462806 cites W2230524333 @default.
- W2912462806 cites W2286630851 @default.
- W2912462806 cites W2302542513 @default.
- W2912462806 cites W2310848249 @default.
- W2912462806 cites W2460208105 @default.
- W2912462806 cites W2507057699 @default.
- W2912462806 cites W2531288459 @default.
- W2912462806 cites W2587865582 @default.
- W2912462806 cites W2597481444 @default.
- W2912462806 cites W2606505363 @default.
- W2912462806 cites W2737617578 @default.
- W2912462806 doi "https://doi.org/10.1177/0954406219827332" @default.
- W2912462806 hasPublicationYear "2019" @default.
- W2912462806 type Work @default.
- W2912462806 sameAs 2912462806 @default.
- W2912462806 citedByCount "3" @default.
- W2912462806 countsByYear W29124628062020 @default.
- W2912462806 countsByYear W29124628062023 @default.
- W2912462806 crossrefType "journal-article" @default.
- W2912462806 hasAuthorship W2912462806A5069250951 @default.
- W2912462806 hasAuthorship W2912462806A5073052010 @default.
- W2912462806 hasConcept C106487976 @default.
- W2912462806 hasConcept C111030470 @default.
- W2912462806 hasConcept C11413529 @default.
- W2912462806 hasConcept C121332964 @default.
- W2912462806 hasConcept C127313418 @default.
- W2912462806 hasConcept C127413603 @default.
- W2912462806 hasConcept C138885662 @default.
- W2912462806 hasConcept C146978453 @default.
- W2912462806 hasConcept C152671427 @default.
- W2912462806 hasConcept C152745839 @default.
- W2912462806 hasConcept C153180895 @default.
- W2912462806 hasConcept C154945302 @default.
- W2912462806 hasConcept C158693339 @default.
- W2912462806 hasConcept C159985019 @default.
- W2912462806 hasConcept C165205528 @default.
- W2912462806 hasConcept C172707124 @default.
- W2912462806 hasConcept C175551986 @default.
- W2912462806 hasConcept C187834632 @default.
- W2912462806 hasConcept C19118579 @default.
- W2912462806 hasConcept C192562407 @default.
- W2912462806 hasConcept C199978012 @default.
- W2912462806 hasConcept C204323151 @default.
- W2912462806 hasConcept C2776214188 @default.
- W2912462806 hasConcept C2776401178 @default.
- W2912462806 hasConcept C31972630 @default.
- W2912462806 hasConcept C41008148 @default.
- W2912462806 hasConcept C41895202 @default.
- W2912462806 hasConcept C42355184 @default.
- W2912462806 hasConcept C62520636 @default.
- W2912462806 hasConceptScore W2912462806C106487976 @default.
- W2912462806 hasConceptScore W2912462806C111030470 @default.
- W2912462806 hasConceptScore W2912462806C11413529 @default.
- W2912462806 hasConceptScore W2912462806C121332964 @default.
- W2912462806 hasConceptScore W2912462806C127313418 @default.
- W2912462806 hasConceptScore W2912462806C127413603 @default.
- W2912462806 hasConceptScore W2912462806C138885662 @default.
- W2912462806 hasConceptScore W2912462806C146978453 @default.
- W2912462806 hasConceptScore W2912462806C152671427 @default.
- W2912462806 hasConceptScore W2912462806C152745839 @default.
- W2912462806 hasConceptScore W2912462806C153180895 @default.
- W2912462806 hasConceptScore W2912462806C154945302 @default.
- W2912462806 hasConceptScore W2912462806C158693339 @default.
- W2912462806 hasConceptScore W2912462806C159985019 @default.
- W2912462806 hasConceptScore W2912462806C165205528 @default.
- W2912462806 hasConceptScore W2912462806C172707124 @default.
- W2912462806 hasConceptScore W2912462806C175551986 @default.
- W2912462806 hasConceptScore W2912462806C187834632 @default.
- W2912462806 hasConceptScore W2912462806C19118579 @default.
- W2912462806 hasConceptScore W2912462806C192562407 @default.
- W2912462806 hasConceptScore W2912462806C199978012 @default.
- W2912462806 hasConceptScore W2912462806C204323151 @default.
- W2912462806 hasConceptScore W2912462806C2776214188 @default.
- W2912462806 hasConceptScore W2912462806C2776401178 @default.
- W2912462806 hasConceptScore W2912462806C31972630 @default.
- W2912462806 hasConceptScore W2912462806C41008148 @default.