Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912822096> ?p ?o ?g. }
- W2912822096 endingPage "643" @default.
- W2912822096 startingPage "643" @default.
- W2912822096 abstract "Unmanned aerial vehicle (UAV) images that can provide thematic information at much higher spatial and temporal resolutions than satellite images have great potential in crop classification. Due to the ultra-high spatial resolution of UAV images, spatial contextual information such as texture is often used for crop classification. From a data availability viewpoint, it is not always possible to acquire time-series UAV images due to limited accessibility to the study area. Thus, it is necessary to improve classification performance for situations when a single or minimum number of UAV images are available for crop classification. In this study, we investigate the potential of gray-level co-occurrence matrix (GLCM)-based texture information for crop classification with time-series UAV images and machine learning classifiers including random forest and support vector machine. In particular, the impact of combining texture and spectral information on the classification performance is evaluated for cases that use only one UAV image or multi-temporal images as input. A case study of crop classification in Anbandegi of Korea was conducted for the above comparisons. The best classification accuracy was achieved when multi-temporal UAV images which can fully account for the growth cycles of crops were combined with GLCM-based texture features. However, the impact of the utilization of texture information was not significant. In contrast, when one August UAV image was used for crop classification, the utilization of texture information significantly affected the classification performance. Classification using texture features extracted from GLCM with larger kernel size significantly improved classification accuracy, an improvement of 7.72%p in overall accuracy for the support vector machine classifier, compared with classification based solely on spectral information. These results indicate the usefulness of texture information for classification of ultra-high-spatial-resolution UAV images, particularly when acquisition of time-series UAV images is difficult and only one UAV image is used for crop classification." @default.
- W2912822096 created "2019-02-21" @default.
- W2912822096 creator A5024837830 @default.
- W2912822096 creator A5033941562 @default.
- W2912822096 date "2019-02-14" @default.
- W2912822096 modified "2023-10-14" @default.
- W2912822096 title "Impact of Texture Information on Crop Classification with Machine Learning and UAV Images" @default.
- W2912822096 cites W1799946925 @default.
- W2912822096 cites W1967400946 @default.
- W2912822096 cites W1972023946 @default.
- W2912822096 cites W1979235721 @default.
- W2912822096 cites W1985166309 @default.
- W2912822096 cites W1998281138 @default.
- W2912822096 cites W2013414890 @default.
- W2912822096 cites W2027165049 @default.
- W2912822096 cites W2044465660 @default.
- W2912822096 cites W2045256553 @default.
- W2912822096 cites W2061240006 @default.
- W2912822096 cites W2066416082 @default.
- W2912822096 cites W2078180904 @default.
- W2912822096 cites W2080580855 @default.
- W2912822096 cites W2111256709 @default.
- W2912822096 cites W2118921617 @default.
- W2912822096 cites W2121025662 @default.
- W2912822096 cites W2124706543 @default.
- W2912822096 cites W2147842585 @default.
- W2912822096 cites W2168481151 @default.
- W2912822096 cites W2251608823 @default.
- W2912822096 cites W2311203878 @default.
- W2912822096 cites W2590379360 @default.
- W2912822096 cites W2594502636 @default.
- W2912822096 cites W2597168415 @default.
- W2912822096 cites W2615031214 @default.
- W2912822096 cites W2624443265 @default.
- W2912822096 cites W2650011260 @default.
- W2912822096 cites W2750708049 @default.
- W2912822096 cites W2751042086 @default.
- W2912822096 cites W2768821646 @default.
- W2912822096 cites W2771038928 @default.
- W2912822096 cites W2783608381 @default.
- W2912822096 cites W2790858865 @default.
- W2912822096 cites W2791001776 @default.
- W2912822096 cites W2793615923 @default.
- W2912822096 cites W2800744393 @default.
- W2912822096 cites W2803704160 @default.
- W2912822096 cites W2806754192 @default.
- W2912822096 cites W2809472397 @default.
- W2912822096 cites W2814877824 @default.
- W2912822096 cites W2886662616 @default.
- W2912822096 cites W2888268192 @default.
- W2912822096 cites W2904039196 @default.
- W2912822096 cites W2911840655 @default.
- W2912822096 cites W2911964244 @default.
- W2912822096 doi "https://doi.org/10.3390/app9040643" @default.
- W2912822096 hasPublicationYear "2019" @default.
- W2912822096 type Work @default.
- W2912822096 sameAs 2912822096 @default.
- W2912822096 citedByCount "68" @default.
- W2912822096 countsByYear W29128220962019 @default.
- W2912822096 countsByYear W29128220962020 @default.
- W2912822096 countsByYear W29128220962021 @default.
- W2912822096 countsByYear W29128220962022 @default.
- W2912822096 countsByYear W29128220962023 @default.
- W2912822096 crossrefType "journal-article" @default.
- W2912822096 hasAuthorship W2912822096A5024837830 @default.
- W2912822096 hasAuthorship W2912822096A5033941562 @default.
- W2912822096 hasBestOaLocation W29128220961 @default.
- W2912822096 hasConcept C115961682 @default.
- W2912822096 hasConcept C12267149 @default.
- W2912822096 hasConcept C153180895 @default.
- W2912822096 hasConcept C154945302 @default.
- W2912822096 hasConcept C169258074 @default.
- W2912822096 hasConcept C205649164 @default.
- W2912822096 hasConcept C2781195486 @default.
- W2912822096 hasConcept C31972630 @default.
- W2912822096 hasConcept C41008148 @default.
- W2912822096 hasConcept C58640448 @default.
- W2912822096 hasConcept C62649853 @default.
- W2912822096 hasConcept C75294576 @default.
- W2912822096 hasConcept C93692415 @default.
- W2912822096 hasConceptScore W2912822096C115961682 @default.
- W2912822096 hasConceptScore W2912822096C12267149 @default.
- W2912822096 hasConceptScore W2912822096C153180895 @default.
- W2912822096 hasConceptScore W2912822096C154945302 @default.
- W2912822096 hasConceptScore W2912822096C169258074 @default.
- W2912822096 hasConceptScore W2912822096C205649164 @default.
- W2912822096 hasConceptScore W2912822096C2781195486 @default.
- W2912822096 hasConceptScore W2912822096C31972630 @default.
- W2912822096 hasConceptScore W2912822096C41008148 @default.
- W2912822096 hasConceptScore W2912822096C58640448 @default.
- W2912822096 hasConceptScore W2912822096C62649853 @default.
- W2912822096 hasConceptScore W2912822096C75294576 @default.
- W2912822096 hasConceptScore W2912822096C93692415 @default.
- W2912822096 hasFunder F4320321370 @default.
- W2912822096 hasIssue "4" @default.
- W2912822096 hasLocation W29128220961 @default.
- W2912822096 hasOpenAccess W2912822096 @default.
- W2912822096 hasPrimaryLocation W29128220961 @default.