Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914911764> ?p ?o ?g. }
- W2914911764 endingPage "23284" @default.
- W2914911764 startingPage "23270" @default.
- W2914911764 abstract "Lidar has received a lot of attention due to its precise ranging accuracy. Ground points filtering is an important task in point clouds processing. It's a challenge to model the ground surface and filter the point clouds accurately in the case of complex ground undulations, occlusions, and sparse point clouds. A novel ground surface modeling method based on a hybrid regression technique is proposed in this paper. The method integrates Gaussian process regression (GPR) and robust locally weighted regression (RLWR) by dividing the point clouds that are projected on the polar grid map into radial and circumferential filtering processes to form a hybrid regression model, which has the ability to eliminate the influence of outliers and model the ground surface robustly. First, the RLWR combined with gradient filter is applied to fit the sampled points in the radial direction, which will exclude outliers and get the fitting ground line. All radial fitting lines constitute the seed skeleton of the whole plane. Then, based on the seeds in the same circumferential of the skeleton, the GPR is applied to construct the ground surface model. The comparative experiments are implemented quantitatively and qualitatively on the simulated point clouds and measured data. The results show that the proposed method performs well in most real scenarios, even in the cases of ground undulation, occlusion, and sparse point clouds." @default.
- W2914911764 created "2019-02-21" @default.
- W2914911764 creator A5017273260 @default.
- W2914911764 creator A5042241049 @default.
- W2914911764 creator A5053492641 @default.
- W2914911764 creator A5064907499 @default.
- W2914911764 creator A5083431484 @default.
- W2914911764 date "2019-01-01" @default.
- W2914911764 modified "2023-10-15" @default.
- W2914911764 title "Ground Surface Filtering of 3D Point Clouds Based on Hybrid Regression Technique" @default.
- W2914911764 cites W1545275585 @default.
- W2914911764 cites W198334126 @default.
- W2914911764 cites W2024081693 @default.
- W2914911764 cites W2027781877 @default.
- W2914911764 cites W2051610568 @default.
- W2914911764 cites W2056769281 @default.
- W2914911764 cites W2071753994 @default.
- W2914911764 cites W2077057258 @default.
- W2914911764 cites W2086495393 @default.
- W2914911764 cites W2089757304 @default.
- W2914911764 cites W2115579991 @default.
- W2914911764 cites W2129091674 @default.
- W2914911764 cites W2132360065 @default.
- W2914911764 cites W2135873867 @default.
- W2914911764 cites W2160146756 @default.
- W2914911764 cites W2166774169 @default.
- W2914911764 cites W2171541387 @default.
- W2914911764 cites W2175683840 @default.
- W2914911764 cites W2180136417 @default.
- W2914911764 cites W2296239170 @default.
- W2914911764 cites W2347073743 @default.
- W2914911764 cites W2437035415 @default.
- W2914911764 cites W2626029873 @default.
- W2914911764 cites W2803692342 @default.
- W2914911764 doi "https://doi.org/10.1109/access.2019.2899674" @default.
- W2914911764 hasPublicationYear "2019" @default.
- W2914911764 type Work @default.
- W2914911764 sameAs 2914911764 @default.
- W2914911764 citedByCount "26" @default.
- W2914911764 countsByYear W29149117642019 @default.
- W2914911764 countsByYear W29149117642020 @default.
- W2914911764 countsByYear W29149117642021 @default.
- W2914911764 countsByYear W29149117642022 @default.
- W2914911764 countsByYear W29149117642023 @default.
- W2914911764 crossrefType "journal-article" @default.
- W2914911764 hasAuthorship W2914911764A5017273260 @default.
- W2914911764 hasAuthorship W2914911764A5042241049 @default.
- W2914911764 hasAuthorship W2914911764A5053492641 @default.
- W2914911764 hasAuthorship W2914911764A5064907499 @default.
- W2914911764 hasAuthorship W2914911764A5083431484 @default.
- W2914911764 hasBestOaLocation W29149117641 @default.
- W2914911764 hasConcept C106131492 @default.
- W2914911764 hasConcept C119857082 @default.
- W2914911764 hasConcept C127313418 @default.
- W2914911764 hasConcept C131979681 @default.
- W2914911764 hasConcept C154945302 @default.
- W2914911764 hasConcept C31972630 @default.
- W2914911764 hasConcept C41008148 @default.
- W2914911764 hasConcept C51399673 @default.
- W2914911764 hasConcept C554190296 @default.
- W2914911764 hasConcept C62649853 @default.
- W2914911764 hasConcept C71813955 @default.
- W2914911764 hasConcept C76155785 @default.
- W2914911764 hasConcept C79337645 @default.
- W2914911764 hasConcept C81692654 @default.
- W2914911764 hasConceptScore W2914911764C106131492 @default.
- W2914911764 hasConceptScore W2914911764C119857082 @default.
- W2914911764 hasConceptScore W2914911764C127313418 @default.
- W2914911764 hasConceptScore W2914911764C131979681 @default.
- W2914911764 hasConceptScore W2914911764C154945302 @default.
- W2914911764 hasConceptScore W2914911764C31972630 @default.
- W2914911764 hasConceptScore W2914911764C41008148 @default.
- W2914911764 hasConceptScore W2914911764C51399673 @default.
- W2914911764 hasConceptScore W2914911764C554190296 @default.
- W2914911764 hasConceptScore W2914911764C62649853 @default.
- W2914911764 hasConceptScore W2914911764C71813955 @default.
- W2914911764 hasConceptScore W2914911764C76155785 @default.
- W2914911764 hasConceptScore W2914911764C79337645 @default.
- W2914911764 hasConceptScore W2914911764C81692654 @default.
- W2914911764 hasFunder F4320321001 @default.
- W2914911764 hasLocation W29149117641 @default.
- W2914911764 hasLocation W29149117642 @default.
- W2914911764 hasOpenAccess W2914911764 @default.
- W2914911764 hasPrimaryLocation W29149117641 @default.
- W2914911764 hasRelatedWork W2366839571 @default.
- W2914911764 hasRelatedWork W2374146176 @default.
- W2914911764 hasRelatedWork W2739701376 @default.
- W2914911764 hasRelatedWork W2901265155 @default.
- W2914911764 hasRelatedWork W2946057701 @default.
- W2914911764 hasRelatedWork W4223960160 @default.
- W2914911764 hasRelatedWork W4293094720 @default.
- W2914911764 hasRelatedWork W4315471419 @default.
- W2914911764 hasRelatedWork W4319317934 @default.
- W2914911764 hasRelatedWork W4386931161 @default.
- W2914911764 hasVolume "7" @default.
- W2914911764 isParatext "false" @default.
- W2914911764 isRetracted "false" @default.
- W2914911764 magId "2914911764" @default.