Matches in SemOpenAlex for { <https://semopenalex.org/work/W2917765216> ?p ?o ?g. }
- W2917765216 endingPage "83" @default.
- W2917765216 startingPage "69" @default.
- W2917765216 abstract "The tree-seed algorithm (TSA) is a new type of heuristic algorithms based on the simulation of trees propagation. It has been applied to solve continuous optimization problems effectively and efficiently. This paper proposes an improved TSA, termed as I-TSA, to solve the nonlinear hysteretic parameter identification problem with three typical hysteretic models, namely Bouc-Wen model, bilinear model with kinematic hardening and bilinear model with equal yielding force. In order to enhance the capability of the proposed approach to search for the best optimization results, the Lévy search mechanism and a new updating equation are introduced to improve the original TSA. Numerical studies on several mathematical benchmark test functions, a single degree-of-freedom system and a multi degree-of-freedom system are conducted to investigate the accuracy and performance of the proposed approach. The identification results are compared with those obtained from several existing widely used heuristic algorithms and the enhanced sensitivity method to demonstrate the improvement and superiority of the proposed approach." @default.
- W2917765216 created "2019-03-02" @default.
- W2917765216 creator A5025762569 @default.
- W2917765216 creator A5028747236 @default.
- W2917765216 creator A5060963672 @default.
- W2917765216 creator A5083551715 @default.
- W2917765216 date "2019-05-01" @default.
- W2917765216 modified "2023-10-01" @default.
- W2917765216 title "Nonlinear hysteretic parameter identification using an improved tree-seed algorithm" @default.
- W2917765216 cites W1193242870 @default.
- W2917765216 cites W1465275763 @default.
- W2917765216 cites W1970077770 @default.
- W2917765216 cites W1971530330 @default.
- W2917765216 cites W1977627943 @default.
- W2917765216 cites W1985776742 @default.
- W2917765216 cites W1986113221 @default.
- W2917765216 cites W1993444010 @default.
- W2917765216 cites W1995922450 @default.
- W2917765216 cites W2013661632 @default.
- W2917765216 cites W2014409722 @default.
- W2917765216 cites W2014988961 @default.
- W2917765216 cites W2019751335 @default.
- W2917765216 cites W2025205122 @default.
- W2917765216 cites W2037725175 @default.
- W2917765216 cites W2040589185 @default.
- W2917765216 cites W2047242761 @default.
- W2917765216 cites W2047626401 @default.
- W2917765216 cites W2050083830 @default.
- W2917765216 cites W2060508080 @default.
- W2917765216 cites W2061309333 @default.
- W2917765216 cites W2071039496 @default.
- W2917765216 cites W2086823341 @default.
- W2917765216 cites W2114057255 @default.
- W2917765216 cites W2117863434 @default.
- W2917765216 cites W2139482396 @default.
- W2917765216 cites W2144317842 @default.
- W2917765216 cites W2283776793 @default.
- W2917765216 cites W2322927894 @default.
- W2917765216 cites W2339208119 @default.
- W2917765216 cites W237869302 @default.
- W2917765216 cites W2464198209 @default.
- W2917765216 cites W2491953817 @default.
- W2917765216 cites W2517124545 @default.
- W2917765216 cites W2612447878 @default.
- W2917765216 cites W2614622514 @default.
- W2917765216 cites W2652401161 @default.
- W2917765216 cites W2737657314 @default.
- W2917765216 cites W2741117667 @default.
- W2917765216 cites W2742987337 @default.
- W2917765216 cites W2751068537 @default.
- W2917765216 cites W2767912279 @default.
- W2917765216 cites W604125888 @default.
- W2917765216 doi "https://doi.org/10.1016/j.swevo.2019.02.005" @default.
- W2917765216 hasPublicationYear "2019" @default.
- W2917765216 type Work @default.
- W2917765216 sameAs 2917765216 @default.
- W2917765216 citedByCount "23" @default.
- W2917765216 countsByYear W29177652162020 @default.
- W2917765216 countsByYear W29177652162021 @default.
- W2917765216 countsByYear W29177652162022 @default.
- W2917765216 countsByYear W29177652162023 @default.
- W2917765216 crossrefType "journal-article" @default.
- W2917765216 hasAuthorship W2917765216A5025762569 @default.
- W2917765216 hasAuthorship W2917765216A5028747236 @default.
- W2917765216 hasAuthorship W2917765216A5060963672 @default.
- W2917765216 hasAuthorship W2917765216A5083551715 @default.
- W2917765216 hasConcept C113174947 @default.
- W2917765216 hasConcept C11413529 @default.
- W2917765216 hasConcept C116834253 @default.
- W2917765216 hasConcept C119247159 @default.
- W2917765216 hasConcept C121332964 @default.
- W2917765216 hasConcept C126255220 @default.
- W2917765216 hasConcept C127413603 @default.
- W2917765216 hasConcept C13280743 @default.
- W2917765216 hasConcept C134306372 @default.
- W2917765216 hasConcept C154945302 @default.
- W2917765216 hasConcept C158622935 @default.
- W2917765216 hasConcept C173801870 @default.
- W2917765216 hasConcept C185798385 @default.
- W2917765216 hasConcept C205203396 @default.
- W2917765216 hasConcept C205649164 @default.
- W2917765216 hasConcept C21200559 @default.
- W2917765216 hasConcept C22157029 @default.
- W2917765216 hasConcept C24326235 @default.
- W2917765216 hasConcept C31972630 @default.
- W2917765216 hasConcept C33923547 @default.
- W2917765216 hasConcept C41008148 @default.
- W2917765216 hasConcept C59822182 @default.
- W2917765216 hasConcept C62520636 @default.
- W2917765216 hasConcept C67186912 @default.
- W2917765216 hasConcept C77088390 @default.
- W2917765216 hasConcept C86803240 @default.
- W2917765216 hasConceptScore W2917765216C113174947 @default.
- W2917765216 hasConceptScore W2917765216C11413529 @default.
- W2917765216 hasConceptScore W2917765216C116834253 @default.
- W2917765216 hasConceptScore W2917765216C119247159 @default.
- W2917765216 hasConceptScore W2917765216C121332964 @default.
- W2917765216 hasConceptScore W2917765216C126255220 @default.