Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922133025> ?p ?o ?g. }
- W2922133025 endingPage "98" @default.
- W2922133025 startingPage "90" @default.
- W2922133025 abstract "Bioorthogonal nanozymes are powerful tools for in situ generation of imaging and therapeutic molecules in biosystems. Surface functionalities of bioorthogonal nanozymes can be engineered to induce accumulation in targeted biorelevant environments. Supramolecular complexation on a nanozyme surface provides access to allosterically control catalytic activity. Bioorthogonal nanozymes show potential for the intratumor in vivo generation of therapeutic drugs. Bioorthogonal nanocatalysts, also known as nanozymes, are promising tools to generate imaging and therapeutic molecules in living systems, through transformations that cannot be performed by cellular machinery. This emerging platform is rapidly evolving towards the creation of smart nanodevices capable of accumulating in targeted cells/tissues, as well as controlling their catalytic activity through chemical and physical signals. In this review, we describe different strategies for fabricating these nanocatalysts and their potential in diagnostic and therapeutic applications. In addition, we discuss the latest advances and envisaged challenges in the use of bioorthogonal nanocatalysis to treat diseases in animal models. Bioorthogonal nanocatalysts, also known as nanozymes, are promising tools to generate imaging and therapeutic molecules in living systems, through transformations that cannot be performed by cellular machinery. This emerging platform is rapidly evolving towards the creation of smart nanodevices capable of accumulating in targeted cells/tissues, as well as controlling their catalytic activity through chemical and physical signals. In this review, we describe different strategies for fabricating these nanocatalysts and their potential in diagnostic and therapeutic applications. In addition, we discuss the latest advances and envisaged challenges in the use of bioorthogonal nanocatalysis to treat diseases in animal models. refers to any chemical reaction that can occur inside of living systems without interfering with native biochemical processes. a reaction that occurs at the interface between two phases (e.g., solid and liquid). a type of enzyme inhibitor that inhibits the action of the protein kinase. an organic molecule with electron-donating groups that can covalently attach to metals. nanoparticle with catalytic properties. a reaction that involves the redistribution of fragments of alkenes by the scission and regeneration of C C double bonds. a compound that, after administration, is transformed by chemical agents into a pharmacologically active drug. a molecule that, after administration, is transformed by chemical agents into a fluorescent molecule. a chemical reaction that is related to the gaining of electrons by one of the atoms. a palladium mediated C C bond formation reaction between an aryl-boronic acid and another aromatic ring substituted with a good leaving group (e.g., mesyl, tosyl, or iodine). generally recognized as the group of elements in the middle section of the periodic table (∼groups 4–11) that behave as catalysts." @default.
- W2922133025 created "2019-03-22" @default.
- W2922133025 creator A5006443870 @default.
- W2922133025 creator A5036055815 @default.
- W2922133025 creator A5074297752 @default.
- W2922133025 creator A5076949431 @default.
- W2922133025 creator A5085558087 @default.
- W2922133025 date "2019-04-01" @default.
- W2922133025 modified "2023-10-17" @default.
- W2922133025 title "Bioorthogonal Nanozymes: Progress towards Therapeutic Applications" @default.
- W2922133025 cites W1598189694 @default.
- W2922133025 cites W1966078967 @default.
- W2922133025 cites W1971805692 @default.
- W2922133025 cites W1972257010 @default.
- W2922133025 cites W1976652877 @default.
- W2922133025 cites W1980288318 @default.
- W2922133025 cites W1981659539 @default.
- W2922133025 cites W1982074128 @default.
- W2922133025 cites W1984896850 @default.
- W2922133025 cites W1997264941 @default.
- W2922133025 cites W1999046940 @default.
- W2922133025 cites W2013183031 @default.
- W2922133025 cites W2021713080 @default.
- W2922133025 cites W2023569605 @default.
- W2922133025 cites W2025973903 @default.
- W2922133025 cites W2046544664 @default.
- W2922133025 cites W2053311966 @default.
- W2922133025 cites W2057315451 @default.
- W2922133025 cites W2066580507 @default.
- W2922133025 cites W2077449617 @default.
- W2922133025 cites W2085277655 @default.
- W2922133025 cites W2088497317 @default.
- W2922133025 cites W2108439421 @default.
- W2922133025 cites W2118292315 @default.
- W2922133025 cites W2119265369 @default.
- W2922133025 cites W2138540786 @default.
- W2922133025 cites W2149472684 @default.
- W2922133025 cites W2152492240 @default.
- W2922133025 cites W2157348216 @default.
- W2922133025 cites W2169099279 @default.
- W2922133025 cites W2283105825 @default.
- W2922133025 cites W2417424384 @default.
- W2922133025 cites W2507192932 @default.
- W2922133025 cites W2514385170 @default.
- W2922133025 cites W2588093328 @default.
- W2922133025 cites W2607455836 @default.
- W2922133025 cites W2612015690 @default.
- W2922133025 cites W2616974369 @default.
- W2922133025 cites W2734381642 @default.
- W2922133025 cites W2735509752 @default.
- W2922133025 cites W2766109004 @default.
- W2922133025 cites W2773048727 @default.
- W2922133025 cites W2780641281 @default.
- W2922133025 cites W2782566449 @default.
- W2922133025 cites W2785089387 @default.
- W2922133025 cites W2787880135 @default.
- W2922133025 cites W2794229108 @default.
- W2922133025 cites W2803211736 @default.
- W2922133025 cites W2804205785 @default.
- W2922133025 cites W2902400267 @default.
- W2922133025 cites W4210970969 @default.
- W2922133025 cites W4232469947 @default.
- W2922133025 doi "https://doi.org/10.1016/j.trechm.2019.02.006" @default.
- W2922133025 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8177485" @default.
- W2922133025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34095799" @default.
- W2922133025 hasPublicationYear "2019" @default.
- W2922133025 type Work @default.
- W2922133025 sameAs 2922133025 @default.
- W2922133025 citedByCount "57" @default.
- W2922133025 countsByYear W29221330252019 @default.
- W2922133025 countsByYear W29221330252020 @default.
- W2922133025 countsByYear W29221330252021 @default.
- W2922133025 countsByYear W29221330252022 @default.
- W2922133025 countsByYear W29221330252023 @default.
- W2922133025 crossrefType "journal-article" @default.
- W2922133025 hasAuthorship W2922133025A5006443870 @default.
- W2922133025 hasAuthorship W2922133025A5036055815 @default.
- W2922133025 hasAuthorship W2922133025A5074297752 @default.
- W2922133025 hasAuthorship W2922133025A5076949431 @default.
- W2922133025 hasAuthorship W2922133025A5085558087 @default.
- W2922133025 hasBestOaLocation W29221330252 @default.
- W2922133025 hasConcept C155672457 @default.
- W2922133025 hasConcept C171250308 @default.
- W2922133025 hasConcept C185592680 @default.
- W2922133025 hasConcept C192562407 @default.
- W2922133025 hasConcept C21951064 @default.
- W2922133025 hasConcept C41008148 @default.
- W2922133025 hasConcept C45083100 @default.
- W2922133025 hasConcept C69610077 @default.
- W2922133025 hasConcept C930959 @default.
- W2922133025 hasConceptScore W2922133025C155672457 @default.
- W2922133025 hasConceptScore W2922133025C171250308 @default.
- W2922133025 hasConceptScore W2922133025C185592680 @default.
- W2922133025 hasConceptScore W2922133025C192562407 @default.
- W2922133025 hasConceptScore W2922133025C21951064 @default.
- W2922133025 hasConceptScore W2922133025C41008148 @default.
- W2922133025 hasConceptScore W2922133025C45083100 @default.
- W2922133025 hasConceptScore W2922133025C69610077 @default.