Matches in SemOpenAlex for { <https://semopenalex.org/work/W2950757888> ?p ?o ?g. }
- W2950757888 endingPage "2545" @default.
- W2950757888 startingPage "2538" @default.
- W2950757888 abstract "Most genetic variants implicated in complex diseases by genome-wide association studies (GWAS) are non-coding, making it challenging to understand the causative genes involved in disease. Integrating external information such as quantitative trait locus (QTL) mapping of molecular traits (e.g. expression, methylation) is a powerful approach to identify the subset of GWAS signals explained by regulatory effects. In particular, expression QTLs (eQTLs) help pinpoint the responsible gene among the GWAS regions that harbor many genes, while methylation QTLs (mQTLs) help identify the epigenetic mechanisms that impact gene expression which in turn affect disease risk. In this work, we propose multiple-trait-coloc (moloc), a Bayesian statistical framework that integrates GWAS summary data with multiple molecular QTL data to identify regulatory effects at GWAS risk loci.We applied moloc to schizophrenia (SCZ) and eQTL/mQTL data derived from human brain tissue and identified 52 candidate genes that influence SCZ through methylation. Our method can be applied to any GWAS and relevant functional data to help prioritize disease associated genes. Availability and implementation: moloc is available for download as an R package (https://github.com/clagiamba/moloc). We also developed a web site to visualize the biological findings (icahn.mssm.edu/moloc). The browser allows searches by gene, methylation probe and scenario of interest.Supplementary data are available at Bioinformatics online." @default.
- W2950757888 created "2019-06-27" @default.
- W2950757888 creator A5013121040 @default.
- W2950757888 creator A5024812275 @default.
- W2950757888 creator A5026430288 @default.
- W2950757888 creator A5031686292 @default.
- W2950757888 creator A5049430688 @default.
- W2950757888 creator A5055206246 @default.
- W2950757888 creator A5057630970 @default.
- W2950757888 creator A5062800512 @default.
- W2950757888 creator A5074488210 @default.
- W2950757888 creator A5078949281 @default.
- W2950757888 date "2018-03-19" @default.
- W2950757888 modified "2023-10-18" @default.
- W2950757888 title "A Bayesian framework for multiple trait colocalization from summary association statistics" @default.
- W2950757888 cites W1980580303 @default.
- W2950757888 cites W2003342692 @default.
- W2950757888 cites W2027899918 @default.
- W2950757888 cites W2054344444 @default.
- W2950757888 cites W2070659891 @default.
- W2950757888 cites W2073836327 @default.
- W2950757888 cites W2078803352 @default.
- W2950757888 cites W2101357408 @default.
- W2950757888 cites W2101505979 @default.
- W2950757888 cites W2136273720 @default.
- W2950757888 cites W2152325859 @default.
- W2950757888 cites W2163924952 @default.
- W2950757888 cites W2181445041 @default.
- W2950757888 cites W2195783463 @default.
- W2950757888 cites W2202219635 @default.
- W2950757888 cites W2219957567 @default.
- W2950757888 cites W2254879037 @default.
- W2950757888 cites W2328393125 @default.
- W2950757888 cites W2344561059 @default.
- W2950757888 cites W2401811918 @default.
- W2950757888 cites W2471410861 @default.
- W2950757888 cites W2510420694 @default.
- W2950757888 cites W2526546796 @default.
- W2950757888 cites W2555614465 @default.
- W2950757888 cites W2565199748 @default.
- W2950757888 cites W2613373507 @default.
- W2950757888 cites W2617162791 @default.
- W2950757888 cites W2759790573 @default.
- W2950757888 cites W2951325776 @default.
- W2950757888 cites W2952273935 @default.
- W2950757888 cites W753582270 @default.
- W2950757888 doi "https://doi.org/10.1093/bioinformatics/bty147" @default.
- W2950757888 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6061859" @default.
- W2950757888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29579179" @default.
- W2950757888 hasPublicationYear "2018" @default.
- W2950757888 type Work @default.
- W2950757888 sameAs 2950757888 @default.
- W2950757888 citedByCount "185" @default.
- W2950757888 countsByYear W29507578882018 @default.
- W2950757888 countsByYear W29507578882019 @default.
- W2950757888 countsByYear W29507578882020 @default.
- W2950757888 countsByYear W29507578882021 @default.
- W2950757888 countsByYear W29507578882022 @default.
- W2950757888 countsByYear W29507578882023 @default.
- W2950757888 crossrefType "journal-article" @default.
- W2950757888 hasAuthorship W2950757888A5013121040 @default.
- W2950757888 hasAuthorship W2950757888A5024812275 @default.
- W2950757888 hasAuthorship W2950757888A5026430288 @default.
- W2950757888 hasAuthorship W2950757888A5031686292 @default.
- W2950757888 hasAuthorship W2950757888A5049430688 @default.
- W2950757888 hasAuthorship W2950757888A5055206246 @default.
- W2950757888 hasAuthorship W2950757888A5057630970 @default.
- W2950757888 hasAuthorship W2950757888A5062800512 @default.
- W2950757888 hasAuthorship W2950757888A5074488210 @default.
- W2950757888 hasAuthorship W2950757888A5078949281 @default.
- W2950757888 hasBestOaLocation W29507578881 @default.
- W2950757888 hasConcept C104317684 @default.
- W2950757888 hasConcept C106208931 @default.
- W2950757888 hasConcept C135763542 @default.
- W2950757888 hasConcept C150194340 @default.
- W2950757888 hasConcept C153209595 @default.
- W2950757888 hasConcept C168393362 @default.
- W2950757888 hasConcept C186413461 @default.
- W2950757888 hasConcept C190727270 @default.
- W2950757888 hasConcept C54355233 @default.
- W2950757888 hasConcept C70721500 @default.
- W2950757888 hasConcept C81941488 @default.
- W2950757888 hasConcept C86803240 @default.
- W2950757888 hasConceptScore W2950757888C104317684 @default.
- W2950757888 hasConceptScore W2950757888C106208931 @default.
- W2950757888 hasConceptScore W2950757888C135763542 @default.
- W2950757888 hasConceptScore W2950757888C150194340 @default.
- W2950757888 hasConceptScore W2950757888C153209595 @default.
- W2950757888 hasConceptScore W2950757888C168393362 @default.
- W2950757888 hasConceptScore W2950757888C186413461 @default.
- W2950757888 hasConceptScore W2950757888C190727270 @default.
- W2950757888 hasConceptScore W2950757888C54355233 @default.
- W2950757888 hasConceptScore W2950757888C70721500 @default.
- W2950757888 hasConceptScore W2950757888C81941488 @default.
- W2950757888 hasConceptScore W2950757888C86803240 @default.
- W2950757888 hasFunder F4320306127 @default.
- W2950757888 hasFunder F4320306147 @default.
- W2950757888 hasFunder F4320306219 @default.