Matches in SemOpenAlex for { <https://semopenalex.org/work/W2951418400> ?p ?o ?g. }
- W2951418400 abstract "Reconstructing a gene network from high-throughput molecular data is often a challenging task, as the number of parameters to estimate easily is much larger than the sample size. A conventional remedy is to regularize or penalize the model likelihood. In network models, this is often done locally in the neighbourhood of each node or gene. However, estimation of the many regularization parameters is often difficult and can result in large statistical uncertainties. In this paper we propose to combine local regularization with global shrinkage of the regularization parameters to borrow strength between genes and improve inference. We employ a simple Bayesian model with non-sparse, conjugate priors to facilitate the use of fast variational approximations to posteriors. We discuss empirical Bayes estimation of hyper-parameters of the priors, and propose a novel approach to rank-based posterior thresholding. Using extensive model- and data-based simulations, we demonstrate that the proposed inference strategy outperforms popular (sparse) methods, yields more stable edges, and is more reproducible." @default.
- W2951418400 created "2019-06-27" @default.
- W2951418400 creator A5015126561 @default.
- W2951418400 creator A5020967582 @default.
- W2951418400 creator A5035498951 @default.
- W2951418400 creator A5043991681 @default.
- W2951418400 creator A5073599183 @default.
- W2951418400 creator A5078861996 @default.
- W2951418400 date "2015-10-13" @default.
- W2951418400 modified "2023-09-27" @default.
- W2951418400 title "Gene network reconstruction using global-local shrinkage priors" @default.
- W2951418400 cites W1510659740 @default.
- W2951418400 cites W1556261580 @default.
- W2951418400 cites W1969415786 @default.
- W2951418400 cites W1979115894 @default.
- W2951418400 cites W1980345828 @default.
- W2951418400 cites W1982652137 @default.
- W2951418400 cites W1985593448 @default.
- W2951418400 cites W1990512452 @default.
- W2951418400 cites W1994642659 @default.
- W2951418400 cites W2001334414 @default.
- W2951418400 cites W2012410038 @default.
- W2951418400 cites W2031988475 @default.
- W2951418400 cites W2053061982 @default.
- W2951418400 cites W2056720303 @default.
- W2951418400 cites W2059424427 @default.
- W2951418400 cites W2062125287 @default.
- W2951418400 cites W2079947444 @default.
- W2951418400 cites W2095243891 @default.
- W2951418400 cites W2100727290 @default.
- W2951418400 cites W2112814716 @default.
- W2951418400 cites W2114710393 @default.
- W2951418400 cites W2127498532 @default.
- W2951418400 cites W2132555912 @default.
- W2951418400 cites W2144898279 @default.
- W2951418400 cites W2147848557 @default.
- W2951418400 cites W2149441684 @default.
- W2951418400 cites W2154290889 @default.
- W2951418400 cites W2157611962 @default.
- W2951418400 cites W2569199996 @default.
- W2951418400 cites W2964136170 @default.
- W2951418400 cites W3098888484 @default.
- W2951418400 cites W3101229196 @default.
- W2951418400 hasPublicationYear "2015" @default.
- W2951418400 type Work @default.
- W2951418400 sameAs 2951418400 @default.
- W2951418400 citedByCount "2" @default.
- W2951418400 countsByYear W29514184002016 @default.
- W2951418400 countsByYear W29514184002021 @default.
- W2951418400 crossrefType "posted-content" @default.
- W2951418400 hasAuthorship W2951418400A5015126561 @default.
- W2951418400 hasAuthorship W2951418400A5020967582 @default.
- W2951418400 hasAuthorship W2951418400A5035498951 @default.
- W2951418400 hasAuthorship W2951418400A5043991681 @default.
- W2951418400 hasAuthorship W2951418400A5073599183 @default.
- W2951418400 hasAuthorship W2951418400A5078861996 @default.
- W2951418400 hasConcept C102592046 @default.
- W2951418400 hasConcept C105795698 @default.
- W2951418400 hasConcept C107673813 @default.
- W2951418400 hasConcept C11413529 @default.
- W2951418400 hasConcept C119857082 @default.
- W2951418400 hasConcept C126255220 @default.
- W2951418400 hasConcept C154945302 @default.
- W2951418400 hasConcept C160234255 @default.
- W2951418400 hasConcept C165646398 @default.
- W2951418400 hasConcept C177769412 @default.
- W2951418400 hasConcept C185429906 @default.
- W2951418400 hasConcept C191393472 @default.
- W2951418400 hasConcept C207201462 @default.
- W2951418400 hasConcept C2776135515 @default.
- W2951418400 hasConcept C2776214188 @default.
- W2951418400 hasConcept C33923547 @default.
- W2951418400 hasConcept C41008148 @default.
- W2951418400 hasConceptScore W2951418400C102592046 @default.
- W2951418400 hasConceptScore W2951418400C105795698 @default.
- W2951418400 hasConceptScore W2951418400C107673813 @default.
- W2951418400 hasConceptScore W2951418400C11413529 @default.
- W2951418400 hasConceptScore W2951418400C119857082 @default.
- W2951418400 hasConceptScore W2951418400C126255220 @default.
- W2951418400 hasConceptScore W2951418400C154945302 @default.
- W2951418400 hasConceptScore W2951418400C160234255 @default.
- W2951418400 hasConceptScore W2951418400C165646398 @default.
- W2951418400 hasConceptScore W2951418400C177769412 @default.
- W2951418400 hasConceptScore W2951418400C185429906 @default.
- W2951418400 hasConceptScore W2951418400C191393472 @default.
- W2951418400 hasConceptScore W2951418400C207201462 @default.
- W2951418400 hasConceptScore W2951418400C2776135515 @default.
- W2951418400 hasConceptScore W2951418400C2776214188 @default.
- W2951418400 hasConceptScore W2951418400C33923547 @default.
- W2951418400 hasConceptScore W2951418400C41008148 @default.
- W2951418400 hasLocation W29514184001 @default.
- W2951418400 hasOpenAccess W2951418400 @default.
- W2951418400 hasPrimaryLocation W29514184001 @default.
- W2951418400 hasRelatedWork W11327913 @default.
- W2951418400 hasRelatedWork W2135791417 @default.
- W2951418400 hasRelatedWork W2161497029 @default.
- W2951418400 hasRelatedWork W2166471851 @default.
- W2951418400 hasRelatedWork W2166570128 @default.
- W2951418400 hasRelatedWork W2396807769 @default.
- W2951418400 hasRelatedWork W2793790296 @default.