Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959831473> ?p ?o ?g. }
- W2959831473 abstract "We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis-Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal." @default.
- W2959831473 created "2019-07-23" @default.
- W2959831473 creator A5003055035 @default.
- W2959831473 creator A5070206514 @default.
- W2959831473 date "2019-07-15" @default.
- W2959831473 modified "2023-09-27" @default.
- W2959831473 title "Markov chain Monte Carlo algorithms with sequential proposals" @default.
- W2959831473 cites W1549853756 @default.
- W2959831473 cites W1966017656 @default.
- W2959831473 cites W1979641008 @default.
- W2959831473 cites W1981369361 @default.
- W2959831473 cites W1981514681 @default.
- W2959831473 cites W1983628095 @default.
- W2959831473 cites W1985715247 @default.
- W2959831473 cites W1993281951 @default.
- W2959831473 cites W1995687931 @default.
- W2959831473 cites W1995780830 @default.
- W2959831473 cites W2006582998 @default.
- W2959831473 cites W2009985525 @default.
- W2959831473 cites W2028147833 @default.
- W2959831473 cites W2029164135 @default.
- W2959831473 cites W2030911724 @default.
- W2959831473 cites W2035081607 @default.
- W2959831473 cites W2056760934 @default.
- W2959831473 cites W2059448777 @default.
- W2959831473 cites W2060182887 @default.
- W2959831473 cites W2064871928 @default.
- W2959831473 cites W2073412813 @default.
- W2959831473 cites W2076249340 @default.
- W2959831473 cites W2085750643 @default.
- W2959831473 cites W2089477572 @default.
- W2959831473 cites W2101687185 @default.
- W2959831473 cites W2114350394 @default.
- W2959831473 cites W2114964853 @default.
- W2959831473 cites W2122891730 @default.
- W2959831473 cites W2132535396 @default.
- W2959831473 cites W2135973421 @default.
- W2959831473 cites W2136878451 @default.
- W2959831473 cites W2138309709 @default.
- W2959831473 cites W2163174637 @default.
- W2959831473 cites W2165991407 @default.
- W2959831473 cites W2232528854 @default.
- W2959831473 cites W2478027467 @default.
- W2959831473 cites W2582743722 @default.
- W2959831473 cites W2738771169 @default.
- W2959831473 cites W2951578733 @default.
- W2959831473 cites W2963561977 @default.
- W2959831473 cites W2963977107 @default.
- W2959831473 cites W3037265734 @default.
- W2959831473 hasPublicationYear "2019" @default.
- W2959831473 type Work @default.
- W2959831473 sameAs 2959831473 @default.
- W2959831473 citedByCount "0" @default.
- W2959831473 crossrefType "posted-content" @default.
- W2959831473 hasAuthorship W2959831473A5003055035 @default.
- W2959831473 hasAuthorship W2959831473A5070206514 @default.
- W2959831473 hasConcept C105795698 @default.
- W2959831473 hasConcept C111350023 @default.
- W2959831473 hasConcept C11413529 @default.
- W2959831473 hasConcept C119857082 @default.
- W2959831473 hasConcept C126255220 @default.
- W2959831473 hasConcept C13153151 @default.
- W2959831473 hasConcept C154945302 @default.
- W2959831473 hasConcept C157286648 @default.
- W2959831473 hasConcept C163836022 @default.
- W2959831473 hasConcept C187192777 @default.
- W2959831473 hasConcept C19499675 @default.
- W2959831473 hasConcept C204693719 @default.
- W2959831473 hasConcept C33923547 @default.
- W2959831473 hasConcept C41008148 @default.
- W2959831473 hasConcept C52421305 @default.
- W2959831473 hasConcept C54907487 @default.
- W2959831473 hasConcept C97074811 @default.
- W2959831473 hasConcept C98763669 @default.
- W2959831473 hasConceptScore W2959831473C105795698 @default.
- W2959831473 hasConceptScore W2959831473C111350023 @default.
- W2959831473 hasConceptScore W2959831473C11413529 @default.
- W2959831473 hasConceptScore W2959831473C119857082 @default.
- W2959831473 hasConceptScore W2959831473C126255220 @default.
- W2959831473 hasConceptScore W2959831473C13153151 @default.
- W2959831473 hasConceptScore W2959831473C154945302 @default.
- W2959831473 hasConceptScore W2959831473C157286648 @default.
- W2959831473 hasConceptScore W2959831473C163836022 @default.
- W2959831473 hasConceptScore W2959831473C187192777 @default.
- W2959831473 hasConceptScore W2959831473C19499675 @default.
- W2959831473 hasConceptScore W2959831473C204693719 @default.
- W2959831473 hasConceptScore W2959831473C33923547 @default.
- W2959831473 hasConceptScore W2959831473C41008148 @default.
- W2959831473 hasConceptScore W2959831473C52421305 @default.
- W2959831473 hasConceptScore W2959831473C54907487 @default.
- W2959831473 hasConceptScore W2959831473C97074811 @default.
- W2959831473 hasConceptScore W2959831473C98763669 @default.
- W2959831473 hasLocation W29598314731 @default.
- W2959831473 hasOpenAccess W2959831473 @default.
- W2959831473 hasPrimaryLocation W29598314731 @default.
- W2959831473 hasRelatedWork W11938153 @default.
- W2959831473 hasRelatedWork W1501586228 @default.
- W2959831473 hasRelatedWork W1552823526 @default.
- W2959831473 hasRelatedWork W1585353408 @default.
- W2959831473 hasRelatedWork W1620908741 @default.