Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964779968> ?p ?o ?g. }
- W2964779968 endingPage "105661" @default.
- W2964779968 startingPage "105661" @default.
- W2964779968 abstract "Detecting biomedical events in text plays a critical role in building natural language processing applications, such as in medical search, disease prevention, and pharmacovigilance. Since an event trigger can signify the occurrence of the event, the detection of biomedical event triggers is a critical step in biomedical event extraction. Current methods usually extract rich features and then feed these features to a classifier. To enhance both automatic feature selection and classification, this paper presented an end-to-end convolutional highway neural network and extreme learning machine (CHNN–ELM) framework to detect biomedical event triggers. This structure has two stages. In the first stage, CHNN is used to efficiently select higher level semantic features based on four different dimensions: embedding, convolutional layer, pooling layer, and highway layer. In the second stage, the proposed model leverages ELM, which has great scalability and generalization performance, to identify various types of biomedical event triggers. Extensive experiments are conducted on the Multi-Level Event Extraction (MLEE) dataset. To the best of our knowledge, this paper is the first to introduce ELM into this task. The results demonstrated that with better feature selection and classification, our approach outperforms several current state-of-the-art methods." @default.
- W2964779968 created "2019-08-13" @default.
- W2964779968 creator A5006941524 @default.
- W2964779968 creator A5022877637 @default.
- W2964779968 creator A5023931221 @default.
- W2964779968 creator A5032764121 @default.
- W2964779968 creator A5051597671 @default.
- W2964779968 creator A5061712236 @default.
- W2964779968 creator A5062877752 @default.
- W2964779968 date "2019-11-01" @default.
- W2964779968 modified "2023-10-11" @default.
- W2964779968 title "Biomedical event trigger detection with convolutional highway neural network and extreme learning machine" @default.
- W2964779968 cites W1679133234 @default.
- W2964779968 cites W1963616278 @default.
- W2964779968 cites W1988622308 @default.
- W2964779968 cites W1993717606 @default.
- W2964779968 cites W2020487656 @default.
- W2964779968 cites W2026131661 @default.
- W2964779968 cites W2065398998 @default.
- W2964779968 cites W2071157591 @default.
- W2964779968 cites W2074553321 @default.
- W2964779968 cites W2098722636 @default.
- W2964779968 cites W2100276951 @default.
- W2964779968 cites W2105440823 @default.
- W2964779968 cites W2111072639 @default.
- W2964779968 cites W2127147316 @default.
- W2964779968 cites W2137664016 @default.
- W2964779968 cites W2146864948 @default.
- W2964779968 cites W2147788440 @default.
- W2964779968 cites W2250539671 @default.
- W2964779968 cites W2250999640 @default.
- W2964779968 cites W2251436774 @default.
- W2964779968 cites W2469171125 @default.
- W2964779968 cites W2481850016 @default.
- W2964779968 cites W2626435434 @default.
- W2964779968 cites W2648802171 @default.
- W2964779968 cites W2734205292 @default.
- W2964779968 cites W2747506362 @default.
- W2964779968 cites W2749353156 @default.
- W2964779968 cites W2751647243 @default.
- W2964779968 cites W2753772327 @default.
- W2964779968 cites W2758887415 @default.
- W2964779968 cites W2767767449 @default.
- W2964779968 cites W2775259072 @default.
- W2964779968 cites W2778973872 @default.
- W2964779968 cites W2790589292 @default.
- W2964779968 cites W2891722048 @default.
- W2964779968 cites W2902899002 @default.
- W2964779968 cites W2952108874 @default.
- W2964779968 cites W2963176196 @default.
- W2964779968 cites W2963446712 @default.
- W2964779968 cites W2963993763 @default.
- W2964779968 cites W2964084166 @default.
- W2964779968 cites W3118338202 @default.
- W2964779968 doi "https://doi.org/10.1016/j.asoc.2019.105661" @default.
- W2964779968 hasPublicationYear "2019" @default.
- W2964779968 type Work @default.
- W2964779968 sameAs 2964779968 @default.
- W2964779968 citedByCount "9" @default.
- W2964779968 countsByYear W29647799682020 @default.
- W2964779968 countsByYear W29647799682021 @default.
- W2964779968 countsByYear W29647799682023 @default.
- W2964779968 crossrefType "journal-article" @default.
- W2964779968 hasAuthorship W2964779968A5006941524 @default.
- W2964779968 hasAuthorship W2964779968A5022877637 @default.
- W2964779968 hasAuthorship W2964779968A5023931221 @default.
- W2964779968 hasAuthorship W2964779968A5032764121 @default.
- W2964779968 hasAuthorship W2964779968A5051597671 @default.
- W2964779968 hasAuthorship W2964779968A5061712236 @default.
- W2964779968 hasAuthorship W2964779968A5062877752 @default.
- W2964779968 hasConcept C119857082 @default.
- W2964779968 hasConcept C121332964 @default.
- W2964779968 hasConcept C148483581 @default.
- W2964779968 hasConcept C153180895 @default.
- W2964779968 hasConcept C154945302 @default.
- W2964779968 hasConcept C2779662365 @default.
- W2964779968 hasConcept C2780150128 @default.
- W2964779968 hasConcept C41008148 @default.
- W2964779968 hasConcept C48044578 @default.
- W2964779968 hasConcept C50644808 @default.
- W2964779968 hasConcept C52622490 @default.
- W2964779968 hasConcept C62520636 @default.
- W2964779968 hasConcept C70437156 @default.
- W2964779968 hasConcept C77088390 @default.
- W2964779968 hasConcept C81363708 @default.
- W2964779968 hasConcept C95623464 @default.
- W2964779968 hasConceptScore W2964779968C119857082 @default.
- W2964779968 hasConceptScore W2964779968C121332964 @default.
- W2964779968 hasConceptScore W2964779968C148483581 @default.
- W2964779968 hasConceptScore W2964779968C153180895 @default.
- W2964779968 hasConceptScore W2964779968C154945302 @default.
- W2964779968 hasConceptScore W2964779968C2779662365 @default.
- W2964779968 hasConceptScore W2964779968C2780150128 @default.
- W2964779968 hasConceptScore W2964779968C41008148 @default.
- W2964779968 hasConceptScore W2964779968C48044578 @default.
- W2964779968 hasConceptScore W2964779968C50644808 @default.
- W2964779968 hasConceptScore W2964779968C52622490 @default.
- W2964779968 hasConceptScore W2964779968C62520636 @default.