Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966702937> ?p ?o ?g. }
- W2966702937 endingPage "8737" @default.
- W2966702937 startingPage "8723" @default.
- W2966702937 abstract "The kinome-wide virtual profiling of small molecules with high-dimensional structure–activity data is a challenging task in drug discovery. Here, we present a virtual profiling model against a panel of 391 kinases based on large-scale bioactivity data and the multitask deep neural network algorithm. The obtained model yields excellent internal prediction capability with an auROC of 0.90 and consistently outperforms conventional single-task models on external tests, especially for kinases with insufficient activity data. Moreover, more rigorous experimental validations including 1410 kinase-compound pairs showed a high-quality average auROC of 0.75 and confirmed many novel predicted “off-target” activities. Given the verified generalizability, the model was further applied to various scenarios for depicting the kinome-wide selectivity and the association with certain diseases. Overall, the computational model enables us to create a comprehensive kinome interaction network for designing novel chemical modulators or drug repositioning and is of practical value for exploring previously less studied kinases." @default.
- W2966702937 created "2019-08-13" @default.
- W2966702937 creator A5002330209 @default.
- W2966702937 creator A5002551693 @default.
- W2966702937 creator A5013173865 @default.
- W2966702937 creator A5018206556 @default.
- W2966702937 creator A5019708823 @default.
- W2966702937 creator A5021670627 @default.
- W2966702937 creator A5022486856 @default.
- W2966702937 creator A5026206371 @default.
- W2966702937 creator A5034607534 @default.
- W2966702937 creator A5040749364 @default.
- W2966702937 creator A5042489382 @default.
- W2966702937 creator A5046574920 @default.
- W2966702937 creator A5047036161 @default.
- W2966702937 creator A5057287134 @default.
- W2966702937 creator A5069649345 @default.
- W2966702937 creator A5073414026 @default.
- W2966702937 creator A5075263856 @default.
- W2966702937 creator A5075749706 @default.
- W2966702937 creator A5089956242 @default.
- W2966702937 date "2019-07-31" @default.
- W2966702937 modified "2023-10-16" @default.
- W2966702937 title "Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation" @default.
- W2966702937 cites W1582774210 @default.
- W2966702937 cites W1608710587 @default.
- W2966702937 cites W1691796058 @default.
- W2966702937 cites W1918079945 @default.
- W2966702937 cites W193586456 @default.
- W2966702937 cites W1968209756 @default.
- W2966702937 cites W1974618278 @default.
- W2966702937 cites W1981806767 @default.
- W2966702937 cites W1981976406 @default.
- W2966702937 cites W1988037271 @default.
- W2966702937 cites W1994447976 @default.
- W2966702937 cites W1997459488 @default.
- W2966702937 cites W1999798000 @default.
- W2966702937 cites W2006716128 @default.
- W2966702937 cites W2015063580 @default.
- W2966702937 cites W2016712107 @default.
- W2966702937 cites W2022609682 @default.
- W2966702937 cites W2024264816 @default.
- W2966702937 cites W2030205108 @default.
- W2966702937 cites W2031082559 @default.
- W2966702937 cites W2039432759 @default.
- W2966702937 cites W2042553090 @default.
- W2966702937 cites W2045618284 @default.
- W2966702937 cites W2052091649 @default.
- W2966702937 cites W2060312656 @default.
- W2966702937 cites W2064264167 @default.
- W2966702937 cites W2083578784 @default.
- W2966702937 cites W2086286404 @default.
- W2966702937 cites W2092575469 @default.
- W2966702937 cites W2100772783 @default.
- W2966702937 cites W2101781016 @default.
- W2966702937 cites W2110648386 @default.
- W2966702937 cites W2110700041 @default.
- W2966702937 cites W2116922255 @default.
- W2966702937 cites W2117939560 @default.
- W2966702937 cites W2118978333 @default.
- W2966702937 cites W2134640949 @default.
- W2966702937 cites W2137004572 @default.
- W2966702937 cites W2138805058 @default.
- W2966702937 cites W2139163604 @default.
- W2966702937 cites W2144012034 @default.
- W2966702937 cites W2146633923 @default.
- W2966702937 cites W2147834058 @default.
- W2966702937 cites W2152265294 @default.
- W2966702937 cites W2153516980 @default.
- W2966702937 cites W2159375732 @default.
- W2966702937 cites W2164575467 @default.
- W2966702937 cites W2164640330 @default.
- W2966702937 cites W2166410137 @default.
- W2966702937 cites W225337920 @default.
- W2966702937 cites W2318546857 @default.
- W2966702937 cites W2461470610 @default.
- W2966702937 cites W2551769070 @default.
- W2966702937 cites W2556014018 @default.
- W2966702937 cites W2560499218 @default.
- W2966702937 cites W2610639068 @default.
- W2966702937 cites W2642906641 @default.
- W2966702937 cites W2734982589 @default.
- W2966702937 cites W2740946158 @default.
- W2966702937 cites W2751756351 @default.
- W2966702937 cites W2773242491 @default.
- W2966702937 cites W2773405722 @default.
- W2966702937 cites W2795693351 @default.
- W2966702937 cites W2802536107 @default.
- W2966702937 cites W2806547269 @default.
- W2966702937 cites W2810407144 @default.
- W2966702937 cites W2899450762 @default.
- W2966702937 cites W2915792373 @default.
- W2966702937 cites W2951428751 @default.
- W2966702937 cites W44815768 @default.
- W2966702937 doi "https://doi.org/10.1021/acs.jmedchem.9b00855" @default.
- W2966702937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31364850" @default.
- W2966702937 hasPublicationYear "2019" @default.
- W2966702937 type Work @default.