Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967987700> ?p ?o ?g. }
- W2967987700 endingPage "2362" @default.
- W2967987700 startingPage "2348" @default.
- W2967987700 abstract "Missing values are common in real-world data stream applications. This article proposes a modified evolving granular fuzzy-rule-based model for function approximation and time-series prediction in an online context, where values may be missing. The fuzzy model is equipped with an incremental learning algorithm that simultaneously imputes missing data and adapts model parameters and structure over time. The evolving fuzzy granular predictor (eFGP) handles single and multiple missing values on data samples by developing reduced-term consequent polynomials and utilizing time-varying granules. Missing at random (MAR) and missing completely at random (MCAR) values in nonstationary data streams are approached. Experiments to predict monthly weather conditions, the number of bikes hired on a daily basis, and the sound pressure on an airfoil from incomplete data streams show the usefulness of eFGP models. Results were compared with those of state-of-the-art fuzzy and neuro-fuzzy evolving modeling methods. A statistical hypothesis test shows that eFGP outperforms other evolving intelligent methods in online MAR and MCAR settings, regardless of the application." @default.
- W2967987700 created "2019-08-22" @default.
- W2967987700 creator A5006995193 @default.
- W2967987700 creator A5036934193 @default.
- W2967987700 creator A5040998302 @default.
- W2967987700 date "2020-10-01" @default.
- W2967987700 modified "2023-10-16" @default.
- W2967987700 title "Incremental Missing-Data Imputation for Evolving Fuzzy Granular Prediction" @default.
- W2967987700 cites W1480376833 @default.
- W2967987700 cites W1537430301 @default.
- W2967987700 cites W1849547295 @default.
- W2967987700 cites W1897957358 @default.
- W2967987700 cites W1969106918 @default.
- W2967987700 cites W1985082097 @default.
- W2967987700 cites W2013955970 @default.
- W2967987700 cites W2039015671 @default.
- W2967987700 cites W2040315807 @default.
- W2967987700 cites W2045544997 @default.
- W2967987700 cites W2054607175 @default.
- W2967987700 cites W2081883639 @default.
- W2967987700 cites W2088866250 @default.
- W2967987700 cites W2094603430 @default.
- W2967987700 cites W2096863518 @default.
- W2967987700 cites W2102720558 @default.
- W2967987700 cites W2105109747 @default.
- W2967987700 cites W2116781287 @default.
- W2967987700 cites W2122966827 @default.
- W2967987700 cites W2151863350 @default.
- W2967987700 cites W2152113622 @default.
- W2967987700 cites W2162210260 @default.
- W2967987700 cites W2176347071 @default.
- W2967987700 cites W2319889034 @default.
- W2967987700 cites W2346100606 @default.
- W2967987700 cites W2408965753 @default.
- W2967987700 cites W2480680997 @default.
- W2967987700 cites W2485832001 @default.
- W2967987700 cites W2511274580 @default.
- W2967987700 cites W2548002304 @default.
- W2967987700 cites W2559950244 @default.
- W2967987700 cites W2568123413 @default.
- W2967987700 cites W2574867284 @default.
- W2967987700 cites W2586627884 @default.
- W2967987700 cites W2587696544 @default.
- W2967987700 cites W2621250964 @default.
- W2967987700 cites W2766425260 @default.
- W2967987700 cites W2769336468 @default.
- W2967987700 cites W2779495751 @default.
- W2967987700 cites W2819873736 @default.
- W2967987700 cites W2929291387 @default.
- W2967987700 cites W4250859275 @default.
- W2967987700 cites W90286923 @default.
- W2967987700 doi "https://doi.org/10.1109/tfuzz.2019.2935688" @default.
- W2967987700 hasPublicationYear "2020" @default.
- W2967987700 type Work @default.
- W2967987700 sameAs 2967987700 @default.
- W2967987700 citedByCount "39" @default.
- W2967987700 countsByYear W29679877002020 @default.
- W2967987700 countsByYear W29679877002021 @default.
- W2967987700 countsByYear W29679877002022 @default.
- W2967987700 countsByYear W29679877002023 @default.
- W2967987700 crossrefType "journal-article" @default.
- W2967987700 hasAuthorship W2967987700A5006995193 @default.
- W2967987700 hasAuthorship W2967987700A5036934193 @default.
- W2967987700 hasAuthorship W2967987700A5040998302 @default.
- W2967987700 hasConcept C105795698 @default.
- W2967987700 hasConcept C119857082 @default.
- W2967987700 hasConcept C124101348 @default.
- W2967987700 hasConcept C154945302 @default.
- W2967987700 hasConcept C195975749 @default.
- W2967987700 hasConcept C2778484313 @default.
- W2967987700 hasConcept C2780049643 @default.
- W2967987700 hasConcept C33923547 @default.
- W2967987700 hasConcept C41008148 @default.
- W2967987700 hasConcept C58041806 @default.
- W2967987700 hasConcept C58166 @default.
- W2967987700 hasConcept C89198739 @default.
- W2967987700 hasConcept C9357733 @default.
- W2967987700 hasConceptScore W2967987700C105795698 @default.
- W2967987700 hasConceptScore W2967987700C119857082 @default.
- W2967987700 hasConceptScore W2967987700C124101348 @default.
- W2967987700 hasConceptScore W2967987700C154945302 @default.
- W2967987700 hasConceptScore W2967987700C195975749 @default.
- W2967987700 hasConceptScore W2967987700C2778484313 @default.
- W2967987700 hasConceptScore W2967987700C2780049643 @default.
- W2967987700 hasConceptScore W2967987700C33923547 @default.
- W2967987700 hasConceptScore W2967987700C41008148 @default.
- W2967987700 hasConceptScore W2967987700C58041806 @default.
- W2967987700 hasConceptScore W2967987700C58166 @default.
- W2967987700 hasConceptScore W2967987700C89198739 @default.
- W2967987700 hasConceptScore W2967987700C9357733 @default.
- W2967987700 hasFunder F4320322554 @default.
- W2967987700 hasFunder F4320327890 @default.
- W2967987700 hasIssue "10" @default.
- W2967987700 hasLocation W29679877001 @default.
- W2967987700 hasOpenAccess W2967987700 @default.
- W2967987700 hasPrimaryLocation W29679877001 @default.
- W2967987700 hasRelatedWork W1976271131 @default.
- W2967987700 hasRelatedWork W2160144994 @default.