Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969201309> ?p ?o ?g. }
- W2969201309 abstract "Abstract A number of specialized clustering methods have been developed so far for the accurate analysis of single-cell RNA-sequencing (scRNA-seq) expression data, and several reports have been published documenting the performance measures of these clustering methods under different conditions. However, to date, there are no available studies regarding the systematic evaluation of the performance measures of the clustering methods taking into consideration the sample size and cell composition of a given scRNA-seq dataset. Herein, a comprehensive performance evaluation study of 11 selected scRNA-seq clustering methods was performed using synthetic datasets with known sample sizes and number of subpopulations, as well as varying levels of transcriptome complexity. The results indicate that the overall performance of the clustering methods under study are highly dependent on the sample size and complexity of the scRNA-seq dataset. In most of the cases, better clustering performances were obtained as the number of cells in a given expression dataset was increased. The findings of this study also highlight the importance of sample size for the successful detection of rare cell subpopulations with an appropriate clustering tool." @default.
- W2969201309 created "2019-08-22" @default.
- W2969201309 creator A5080853718 @default.
- W2969201309 date "2019-08-14" @default.
- W2969201309 modified "2023-09-27" @default.
- W2969201309 title "Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions" @default.
- W2969201309 cites W1813068103 @default.
- W2969201309 cites W1966327575 @default.
- W2969201309 cites W1967327758 @default.
- W2969201309 cites W1977556410 @default.
- W2969201309 cites W1979283544 @default.
- W2969201309 cites W1983838190 @default.
- W2969201309 cites W1988391018 @default.
- W2969201309 cites W1993835819 @default.
- W2969201309 cites W2004902747 @default.
- W2969201309 cites W2008595251 @default.
- W2969201309 cites W2016381774 @default.
- W2969201309 cites W2025828346 @default.
- W2969201309 cites W2030644393 @default.
- W2969201309 cites W2033167804 @default.
- W2969201309 cites W2033403400 @default.
- W2969201309 cites W2050163545 @default.
- W2969201309 cites W2050547995 @default.
- W2969201309 cites W2060245619 @default.
- W2969201309 cites W2069089843 @default.
- W2969201309 cites W2071010503 @default.
- W2969201309 cites W2090634555 @default.
- W2969201309 cites W2102212449 @default.
- W2969201309 cites W2112900933 @default.
- W2969201309 cites W2121690903 @default.
- W2969201309 cites W2135937351 @default.
- W2969201309 cites W2136680615 @default.
- W2969201309 cites W2149573463 @default.
- W2969201309 cites W2150575159 @default.
- W2969201309 cites W2154431984 @default.
- W2969201309 cites W2165293958 @default.
- W2969201309 cites W2195294260 @default.
- W2969201309 cites W2294798173 @default.
- W2969201309 cites W2306630387 @default.
- W2969201309 cites W2337733832 @default.
- W2969201309 cites W2342423616 @default.
- W2969201309 cites W2373831850 @default.
- W2969201309 cites W2398161915 @default.
- W2969201309 cites W2436987094 @default.
- W2969201309 cites W2472063172 @default.
- W2969201309 cites W2473258837 @default.
- W2969201309 cites W2586629973 @default.
- W2969201309 cites W2598326928 @default.
- W2969201309 cites W2617939744 @default.
- W2969201309 cites W2765825216 @default.
- W2969201309 cites W2772052731 @default.
- W2969201309 cites W2884197618 @default.
- W2969201309 cites W2886125669 @default.
- W2969201309 cites W2949067670 @default.
- W2969201309 cites W2951158909 @default.
- W2969201309 cites W2951638683 @default.
- W2969201309 cites W2952303649 @default.
- W2969201309 cites W4235169531 @default.
- W2969201309 cites W4239510810 @default.
- W2969201309 cites W4251287806 @default.
- W2969201309 doi "https://doi.org/10.1515/sagmb-2019-0004" @default.
- W2969201309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31646845" @default.
- W2969201309 hasPublicationYear "2019" @default.
- W2969201309 type Work @default.
- W2969201309 sameAs 2969201309 @default.
- W2969201309 citedByCount "3" @default.
- W2969201309 countsByYear W29692013092021 @default.
- W2969201309 countsByYear W29692013092022 @default.
- W2969201309 crossrefType "journal-article" @default.
- W2969201309 hasAuthorship W2969201309A5080853718 @default.
- W2969201309 hasConcept C105795698 @default.
- W2969201309 hasConcept C124101348 @default.
- W2969201309 hasConcept C129848803 @default.
- W2969201309 hasConcept C154945302 @default.
- W2969201309 hasConcept C185592680 @default.
- W2969201309 hasConcept C198531522 @default.
- W2969201309 hasConcept C199360897 @default.
- W2969201309 hasConcept C33923547 @default.
- W2969201309 hasConcept C41008148 @default.
- W2969201309 hasConcept C43617362 @default.
- W2969201309 hasConcept C73555534 @default.
- W2969201309 hasConcept C90559484 @default.
- W2969201309 hasConceptScore W2969201309C105795698 @default.
- W2969201309 hasConceptScore W2969201309C124101348 @default.
- W2969201309 hasConceptScore W2969201309C129848803 @default.
- W2969201309 hasConceptScore W2969201309C154945302 @default.
- W2969201309 hasConceptScore W2969201309C185592680 @default.
- W2969201309 hasConceptScore W2969201309C198531522 @default.
- W2969201309 hasConceptScore W2969201309C199360897 @default.
- W2969201309 hasConceptScore W2969201309C33923547 @default.
- W2969201309 hasConceptScore W2969201309C41008148 @default.
- W2969201309 hasConceptScore W2969201309C43617362 @default.
- W2969201309 hasConceptScore W2969201309C73555534 @default.
- W2969201309 hasConceptScore W2969201309C90559484 @default.
- W2969201309 hasIssue "5" @default.
- W2969201309 hasLocation W29692013091 @default.
- W2969201309 hasLocation W29692013092 @default.
- W2969201309 hasOpenAccess W2969201309 @default.
- W2969201309 hasPrimaryLocation W29692013091 @default.
- W2969201309 hasRelatedWork W1570799877 @default.