Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969260977> ?p ?o ?g. }
- W2969260977 endingPage "2448" @default.
- W2969260977 startingPage "2437" @default.
- W2969260977 abstract "Workload assessment faces two major issues. That is, how to learn effective fatigue characteristics and how to find the potential state of the workload. This paper proposes a solution to assess the brain fatigue workload of pilots through an instantaneous spectral entropy feature and an infinitely warped model. The instantaneous characteristics of electroencephalography (EEG) signals are extracted by Hilbert transform, and Euclidean norm weighted permutation entropy is proposed. The infinitely warped model is a new automatic learning model for detecting arbitrary shapes of EEG data. In addition, we propose a rapid learning framework to learn mental fatigue by integrating Treelet transform and infinitely warped models. Compared to other state-of-the-art methods, our approach is better able to handle complex data in complex shapes. The experimental results show that this method can more effectively assess the brain fatigue of pilots." @default.
- W2969260977 created "2019-08-29" @default.
- W2969260977 creator A5002375062 @default.
- W2969260977 creator A5020033792 @default.
- W2969260977 creator A5024767647 @default.
- W2969260977 creator A5029257310 @default.
- W2969260977 creator A5073386986 @default.
- W2969260977 creator A5076430249 @default.
- W2969260977 creator A5079224867 @default.
- W2969260977 creator A5088781048 @default.
- W2969260977 date "2020-06-01" @default.
- W2969260977 modified "2023-10-15" @default.
- W2969260977 title "Novel Nonlinear Approach for Real-Time Fatigue EEG Data: An Infinitely Warped Model of Weighted Permutation Entropy" @default.
- W2969260977 cites W1969675008 @default.
- W2969260977 cites W1981211771 @default.
- W2969260977 cites W1986737286 @default.
- W2969260977 cites W1996324413 @default.
- W2969260977 cites W2001476450 @default.
- W2969260977 cites W2003087435 @default.
- W2969260977 cites W2013926069 @default.
- W2969260977 cites W2023133322 @default.
- W2969260977 cites W2071832993 @default.
- W2969260977 cites W2075000159 @default.
- W2969260977 cites W2096277597 @default.
- W2969260977 cites W2112118949 @default.
- W2969260977 cites W2119269525 @default.
- W2969260977 cites W2134577338 @default.
- W2969260977 cites W2136857199 @default.
- W2969260977 cites W2140434576 @default.
- W2969260977 cites W2146182319 @default.
- W2969260977 cites W2148492655 @default.
- W2969260977 cites W2151182412 @default.
- W2969260977 cites W2151386286 @default.
- W2969260977 cites W2152282628 @default.
- W2969260977 cites W2153635508 @default.
- W2969260977 cites W2165469512 @default.
- W2969260977 cites W2170131944 @default.
- W2969260977 cites W2172717914 @default.
- W2969260977 cites W2178677884 @default.
- W2969260977 cites W2241667675 @default.
- W2969260977 cites W2288442072 @default.
- W2969260977 cites W2354225344 @default.
- W2969260977 cites W2418728938 @default.
- W2969260977 cites W2419542619 @default.
- W2969260977 cites W2509901229 @default.
- W2969260977 cites W2550913733 @default.
- W2969260977 cites W2561643219 @default.
- W2969260977 cites W2574833558 @default.
- W2969260977 cites W2592710166 @default.
- W2969260977 cites W2609112393 @default.
- W2969260977 cites W2611984779 @default.
- W2969260977 cites W2612332550 @default.
- W2969260977 cites W2783590821 @default.
- W2969260977 cites W2890770085 @default.
- W2969260977 cites W2894818097 @default.
- W2969260977 cites W3101533025 @default.
- W2969260977 cites W4244030505 @default.
- W2969260977 cites W51628748 @default.
- W2969260977 doi "https://doi.org/10.1109/tits.2019.2918438" @default.
- W2969260977 hasPublicationYear "2020" @default.
- W2969260977 type Work @default.
- W2969260977 sameAs 2969260977 @default.
- W2969260977 citedByCount "11" @default.
- W2969260977 countsByYear W29692609772021 @default.
- W2969260977 countsByYear W29692609772022 @default.
- W2969260977 countsByYear W29692609772023 @default.
- W2969260977 crossrefType "journal-article" @default.
- W2969260977 hasAuthorship W2969260977A5002375062 @default.
- W2969260977 hasAuthorship W2969260977A5020033792 @default.
- W2969260977 hasAuthorship W2969260977A5024767647 @default.
- W2969260977 hasAuthorship W2969260977A5029257310 @default.
- W2969260977 hasAuthorship W2969260977A5073386986 @default.
- W2969260977 hasAuthorship W2969260977A5076430249 @default.
- W2969260977 hasAuthorship W2969260977A5079224867 @default.
- W2969260977 hasAuthorship W2969260977A5088781048 @default.
- W2969260977 hasConcept C106131492 @default.
- W2969260977 hasConcept C106301342 @default.
- W2969260977 hasConcept C111919701 @default.
- W2969260977 hasConcept C11413529 @default.
- W2969260977 hasConcept C118552586 @default.
- W2969260977 hasConcept C120174047 @default.
- W2969260977 hasConcept C121332964 @default.
- W2969260977 hasConcept C153180895 @default.
- W2969260977 hasConcept C154945302 @default.
- W2969260977 hasConcept C15744967 @default.
- W2969260977 hasConcept C158622935 @default.
- W2969260977 hasConcept C2778476105 @default.
- W2969260977 hasConcept C28490314 @default.
- W2969260977 hasConcept C28799612 @default.
- W2969260977 hasConcept C31972630 @default.
- W2969260977 hasConcept C41008148 @default.
- W2969260977 hasConcept C522805319 @default.
- W2969260977 hasConcept C62520636 @default.
- W2969260977 hasConcept C86859247 @default.
- W2969260977 hasConceptScore W2969260977C106131492 @default.
- W2969260977 hasConceptScore W2969260977C106301342 @default.
- W2969260977 hasConceptScore W2969260977C111919701 @default.
- W2969260977 hasConceptScore W2969260977C11413529 @default.