Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971330993> ?p ?o ?g. }
- W2971330993 abstract "We are interested in the optimal scheduling of a collection of multi-component application jobs in an edge computing system that consists of geo-distributed edge computing nodes connected through a wide area network. The scheduling and placement of application jobs in an edge system is challenging due to the interdependence of multiple components of each job, and the communication delays between the geographically distributed data sources and edge nodes and their dynamic availability. In this paper we explore the feasibility of applying Deep Reinforcement Learning (DRL) based design to address these challenges. We introduce a DRL actor-critic algorithm that aims to find an optimal scheduling policy to minimize average job slowdown in the edge system. We have demonstrated through simulations that our design outperforms a few existing algorithms, based on both synthetic data and a Google cloud data trace." @default.
- W2971330993 created "2019-09-05" @default.
- W2971330993 creator A5011274125 @default.
- W2971330993 creator A5077348938 @default.
- W2971330993 creator A5084947984 @default.
- W2971330993 creator A5088574399 @default.
- W2971330993 date "2019-08-26" @default.
- W2971330993 modified "2023-10-09" @default.
- W2971330993 title "A Deep Reinforcement Learning Approach to Multi-component Job Scheduling in Edge Computing" @default.
- W2971330993 cites W2121863487 @default.
- W2971330993 cites W2173248099 @default.
- W2971330993 cites W2215378786 @default.
- W2971330993 cites W2546571074 @default.
- W2971330993 cites W2592002261 @default.
- W2971330993 cites W2593818073 @default.
- W2971330993 cites W2617411258 @default.
- W2971330993 cites W2744628735 @default.
- W2971330993 cites W2762456226 @default.
- W2971330993 cites W2765680238 @default.
- W2971330993 cites W2767011558 @default.
- W2971330993 cites W2770424304 @default.
- W2971330993 cites W2786348542 @default.
- W2971330993 cites W2790421859 @default.
- W2971330993 cites W2790885923 @default.
- W2971330993 cites W2808417010 @default.
- W2971330993 cites W2887709116 @default.
- W2971330993 cites W2932305125 @default.
- W2971330993 cites W2934340943 @default.
- W2971330993 cites W2946495926 @default.
- W2971330993 cites W2952898083 @default.
- W2971330993 cites W2963222872 @default.
- W2971330993 cites W2963389642 @default.
- W2971330993 cites W2963618158 @default.
- W2971330993 cites W2963842262 @default.
- W2971330993 cites W2968986602 @default.
- W2971330993 doi "https://doi.org/10.48550/arxiv.1908.10290" @default.
- W2971330993 hasPublicationYear "2019" @default.
- W2971330993 type Work @default.
- W2971330993 sameAs 2971330993 @default.
- W2971330993 citedByCount "0" @default.
- W2971330993 crossrefType "posted-content" @default.
- W2971330993 hasAuthorship W2971330993A5011274125 @default.
- W2971330993 hasAuthorship W2971330993A5077348938 @default.
- W2971330993 hasAuthorship W2971330993A5084947984 @default.
- W2971330993 hasAuthorship W2971330993A5088574399 @default.
- W2971330993 hasBestOaLocation W29713309931 @default.
- W2971330993 hasConcept C111873713 @default.
- W2971330993 hasConcept C111919701 @default.
- W2971330993 hasConcept C120314980 @default.
- W2971330993 hasConcept C121332964 @default.
- W2971330993 hasConcept C126255220 @default.
- W2971330993 hasConcept C154945302 @default.
- W2971330993 hasConcept C162307627 @default.
- W2971330993 hasConcept C168167062 @default.
- W2971330993 hasConcept C206729178 @default.
- W2971330993 hasConcept C2778456923 @default.
- W2971330993 hasConcept C31258907 @default.
- W2971330993 hasConcept C31689143 @default.
- W2971330993 hasConcept C33923547 @default.
- W2971330993 hasConcept C41008148 @default.
- W2971330993 hasConcept C5119721 @default.
- W2971330993 hasConcept C55416958 @default.
- W2971330993 hasConcept C74172769 @default.
- W2971330993 hasConcept C79974875 @default.
- W2971330993 hasConcept C97355855 @default.
- W2971330993 hasConcept C97541855 @default.
- W2971330993 hasConceptScore W2971330993C111873713 @default.
- W2971330993 hasConceptScore W2971330993C111919701 @default.
- W2971330993 hasConceptScore W2971330993C120314980 @default.
- W2971330993 hasConceptScore W2971330993C121332964 @default.
- W2971330993 hasConceptScore W2971330993C126255220 @default.
- W2971330993 hasConceptScore W2971330993C154945302 @default.
- W2971330993 hasConceptScore W2971330993C162307627 @default.
- W2971330993 hasConceptScore W2971330993C168167062 @default.
- W2971330993 hasConceptScore W2971330993C206729178 @default.
- W2971330993 hasConceptScore W2971330993C2778456923 @default.
- W2971330993 hasConceptScore W2971330993C31258907 @default.
- W2971330993 hasConceptScore W2971330993C31689143 @default.
- W2971330993 hasConceptScore W2971330993C33923547 @default.
- W2971330993 hasConceptScore W2971330993C41008148 @default.
- W2971330993 hasConceptScore W2971330993C5119721 @default.
- W2971330993 hasConceptScore W2971330993C55416958 @default.
- W2971330993 hasConceptScore W2971330993C74172769 @default.
- W2971330993 hasConceptScore W2971330993C79974875 @default.
- W2971330993 hasConceptScore W2971330993C97355855 @default.
- W2971330993 hasConceptScore W2971330993C97541855 @default.
- W2971330993 hasLocation W29713309931 @default.
- W2971330993 hasOpenAccess W2971330993 @default.
- W2971330993 hasPrimaryLocation W29713309931 @default.
- W2971330993 hasRelatedWork W128041734 @default.
- W2971330993 hasRelatedWork W2039968861 @default.
- W2971330993 hasRelatedWork W2342259751 @default.
- W2971330993 hasRelatedWork W260766989 @default.
- W2971330993 hasRelatedWork W2924246906 @default.
- W2971330993 hasRelatedWork W2971330993 @default.
- W2971330993 hasRelatedWork W3016312248 @default.
- W2971330993 hasRelatedWork W3033811091 @default.
- W2971330993 hasRelatedWork W3173555414 @default.
- W2971330993 hasRelatedWork W4283211351 @default.
- W2971330993 isParatext "false" @default.