Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973661710> ?p ?o ?g. }
- W2973661710 abstract "Computed tomography perfusion (CTP) facilitates low-cost diagnosis and treatment of acute stroke. Cine scanning allows users to visualize brain anatomy and blood flow in virtually live time. However, effective visualization exposes patients to radiocontrast pharmaceuticals and extended scan times. Higher radiation dosage exposes patients to potential risks including hair loss, cataract formation, and cancer. To alleviate these risks, radiation dosage can be reduced along with tube current and/or X-ray radiation exposure time. However, resulting images may lack sufficient information or be affected by noise and/or artifacts. In this chapter, we propose a deep spatial-temporal convolutional neural network to preserve CTP image quality at reduced tube current, low spatial resolution, and shorter exposure time. This network structure extracts multi-directional features from low-dose and low-resolution patches at different cross sections of the spatial-temporal data and reconstructs high-quality CT volumes. We assess the performance of the network concerning image restoration at different tube currents and multiple resolution scales. The results indicate the ability of our network in restoring high-quality scans from data captured at as low as 21% of the standard radiation dose. The proposed network achieves an average improvement of 7% in perfusion maps compared to the state-of-the-art method." @default.
- W2973661710 created "2019-09-26" @default.
- W2973661710 creator A5002704866 @default.
- W2973661710 creator A5007109351 @default.
- W2973661710 creator A5016683007 @default.
- W2973661710 creator A5018814025 @default.
- W2973661710 creator A5025624636 @default.
- W2973661710 creator A5059916379 @default.
- W2973661710 creator A5083801513 @default.
- W2973661710 creator A5088627565 @default.
- W2973661710 date "2019-01-01" @default.
- W2973661710 modified "2023-09-25" @default.
- W2973661710 title "Deep Spatial-Temporal Convolutional Neural Networks for Medical Image Restoration" @default.
- W2973661710 cites W1861213723 @default.
- W2973661710 cites W1983817136 @default.
- W2973661710 cites W1998473914 @default.
- W2973661710 cites W2002303177 @default.
- W2973661710 cites W2068730032 @default.
- W2973661710 cites W2097117768 @default.
- W2973661710 cites W2097378809 @default.
- W2973661710 cites W2153093189 @default.
- W2973661710 cites W2155276737 @default.
- W2973661710 cites W2155893237 @default.
- W2973661710 cites W2164747888 @default.
- W2973661710 cites W2170260757 @default.
- W2973661710 cites W2177201741 @default.
- W2973661710 cites W2184334976 @default.
- W2973661710 cites W2242218935 @default.
- W2973661710 cites W2508457857 @default.
- W2973661710 cites W2526558307 @default.
- W2973661710 cites W2551650956 @default.
- W2973661710 cites W2552171512 @default.
- W2973661710 cites W2580792129 @default.
- W2973661710 cites W2751034983 @default.
- W2973661710 cites W2752333184 @default.
- W2973661710 cites W54257720 @default.
- W2973661710 doi "https://doi.org/10.1007/978-3-030-13969-8_13" @default.
- W2973661710 hasPublicationYear "2019" @default.
- W2973661710 type Work @default.
- W2973661710 sameAs 2973661710 @default.
- W2973661710 citedByCount "0" @default.
- W2973661710 crossrefType "book-chapter" @default.
- W2973661710 hasAuthorship W2973661710A5002704866 @default.
- W2973661710 hasAuthorship W2973661710A5007109351 @default.
- W2973661710 hasAuthorship W2973661710A5016683007 @default.
- W2973661710 hasAuthorship W2973661710A5018814025 @default.
- W2973661710 hasAuthorship W2973661710A5025624636 @default.
- W2973661710 hasAuthorship W2973661710A5059916379 @default.
- W2973661710 hasAuthorship W2973661710A5083801513 @default.
- W2973661710 hasAuthorship W2973661710A5088627565 @default.
- W2973661710 hasConcept C108583219 @default.
- W2973661710 hasConcept C115961682 @default.
- W2973661710 hasConcept C119666444 @default.
- W2973661710 hasConcept C120665830 @default.
- W2973661710 hasConcept C121332964 @default.
- W2973661710 hasConcept C126838900 @default.
- W2973661710 hasConcept C135691158 @default.
- W2973661710 hasConcept C146957229 @default.
- W2973661710 hasConcept C153180895 @default.
- W2973661710 hasConcept C154945302 @default.
- W2973661710 hasConcept C205372480 @default.
- W2973661710 hasConcept C2989005 @default.
- W2973661710 hasConcept C31972630 @default.
- W2973661710 hasConcept C36464697 @default.
- W2973661710 hasConcept C41008148 @default.
- W2973661710 hasConcept C55020928 @default.
- W2973661710 hasConcept C71924100 @default.
- W2973661710 hasConcept C81363708 @default.
- W2973661710 hasConcept C99498987 @default.
- W2973661710 hasConceptScore W2973661710C108583219 @default.
- W2973661710 hasConceptScore W2973661710C115961682 @default.
- W2973661710 hasConceptScore W2973661710C119666444 @default.
- W2973661710 hasConceptScore W2973661710C120665830 @default.
- W2973661710 hasConceptScore W2973661710C121332964 @default.
- W2973661710 hasConceptScore W2973661710C126838900 @default.
- W2973661710 hasConceptScore W2973661710C135691158 @default.
- W2973661710 hasConceptScore W2973661710C146957229 @default.
- W2973661710 hasConceptScore W2973661710C153180895 @default.
- W2973661710 hasConceptScore W2973661710C154945302 @default.
- W2973661710 hasConceptScore W2973661710C205372480 @default.
- W2973661710 hasConceptScore W2973661710C2989005 @default.
- W2973661710 hasConceptScore W2973661710C31972630 @default.
- W2973661710 hasConceptScore W2973661710C36464697 @default.
- W2973661710 hasConceptScore W2973661710C41008148 @default.
- W2973661710 hasConceptScore W2973661710C55020928 @default.
- W2973661710 hasConceptScore W2973661710C71924100 @default.
- W2973661710 hasConceptScore W2973661710C81363708 @default.
- W2973661710 hasConceptScore W2973661710C99498987 @default.
- W2973661710 hasLocation W29736617101 @default.
- W2973661710 hasOpenAccess W2973661710 @default.
- W2973661710 hasPrimaryLocation W29736617101 @default.
- W2973661710 hasRelatedWork W1505139569 @default.
- W2973661710 hasRelatedWork W1983004867 @default.
- W2973661710 hasRelatedWork W2023590105 @default.
- W2973661710 hasRelatedWork W2045131805 @default.
- W2973661710 hasRelatedWork W2061571442 @default.
- W2973661710 hasRelatedWork W2081971634 @default.
- W2973661710 hasRelatedWork W2093072099 @default.
- W2973661710 hasRelatedWork W2134186649 @default.
- W2973661710 hasRelatedWork W2183027284 @default.