Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980454921> ?p ?o ?g. }
- W2980454921 endingPage "194418" @default.
- W2980454921 startingPage "194418" @default.
- W2980454921 abstract "Gaussian Graphical Models (GGMs) are tools to infer dependencies between biological variables. Popular applications are the reconstruction of gene, protein, and metabolite association networks. GGMs are an exploratory research tool that can be useful to discover interesting relations between genes (functional clusters) or to identify therapeutically interesting genes, but do not necessarily infer a network in the mechanistic sense. Although GGMs are well investigated from a theoretical and applied perspective, important extensions are not well known within the biological community. GGMs assume, for instance, multivariate normal distributed data. If this assumption is violated Mixed Graphical Models (MGMs) can be the better choice. In this review, we provide the theoretical foundations of GGMs, present extensions such as MGMs or multi-class GGMs, and illustrate how those methods can provide insight in biological mechanisms. We summarize several applications and present user-friendly estimation software. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony." @default.
- W2980454921 created "2019-10-25" @default.
- W2980454921 creator A5002232081 @default.
- W2980454921 creator A5037469384 @default.
- W2980454921 creator A5041687654 @default.
- W2980454921 creator A5084245470 @default.
- W2980454921 creator A5091597117 @default.
- W2980454921 date "2020-06-01" @default.
- W2980454921 modified "2023-10-16" @default.
- W2980454921 title "Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools" @default.
- W2980454921 cites W1492765740 @default.
- W2980454921 cites W1716904016 @default.
- W2980454921 cites W1864161604 @default.
- W2980454921 cites W1905165981 @default.
- W2980454921 cites W1956024495 @default.
- W2980454921 cites W1990512452 @default.
- W2980454921 cites W1990551862 @default.
- W2980454921 cites W1993746015 @default.
- W2980454921 cites W2001334414 @default.
- W2980454921 cites W2017752147 @default.
- W2980454921 cites W2020925091 @default.
- W2980454921 cites W2021034217 @default.
- W2980454921 cites W2021556180 @default.
- W2980454921 cites W2029607409 @default.
- W2980454921 cites W2030391580 @default.
- W2980454921 cites W2031190866 @default.
- W2980454921 cites W2046440344 @default.
- W2980454921 cites W2072040767 @default.
- W2980454921 cites W2079947444 @default.
- W2980454921 cites W2080426060 @default.
- W2980454921 cites W2081746825 @default.
- W2980454921 cites W2099380913 @default.
- W2980454921 cites W2099760312 @default.
- W2980454921 cites W2101719059 @default.
- W2980454921 cites W2104693064 @default.
- W2980454921 cites W2104828064 @default.
- W2980454921 cites W2105017977 @default.
- W2980454921 cites W2111338108 @default.
- W2980454921 cites W2111501574 @default.
- W2980454921 cites W2115111790 @default.
- W2980454921 cites W2117994680 @default.
- W2980454921 cites W2122176921 @default.
- W2980454921 cites W2122825543 @default.
- W2980454921 cites W2123270810 @default.
- W2980454921 cites W2125631472 @default.
- W2980454921 cites W2132555912 @default.
- W2980454921 cites W2137327804 @default.
- W2980454921 cites W2150926065 @default.
- W2980454921 cites W2151457629 @default.
- W2980454921 cites W2151708044 @default.
- W2980454921 cites W2152401289 @default.
- W2980454921 cites W2155205047 @default.
- W2980454921 cites W2157611962 @default.
- W2980454921 cites W2159585030 @default.
- W2980454921 cites W2159675211 @default.
- W2980454921 cites W2161920970 @default.
- W2980454921 cites W2162142896 @default.
- W2980454921 cites W2162896254 @default.
- W2980454921 cites W2165009258 @default.
- W2980454921 cites W2165408259 @default.
- W2980454921 cites W2165928777 @default.
- W2980454921 cites W2166347816 @default.
- W2980454921 cites W2166701319 @default.
- W2980454921 cites W2258410243 @default.
- W2980454921 cites W2263654784 @default.
- W2980454921 cites W2279481061 @default.
- W2980454921 cites W2332292689 @default.
- W2980454921 cites W2417388301 @default.
- W2980454921 cites W2462099493 @default.
- W2980454921 cites W2514161540 @default.
- W2980454921 cites W2518969260 @default.
- W2980454921 cites W2553767656 @default.
- W2980454921 cites W2562162676 @default.
- W2980454921 cites W2586275266 @default.
- W2980454921 cites W2602620302 @default.
- W2980454921 cites W2735800896 @default.
- W2980454921 cites W2748709680 @default.
- W2980454921 cites W2767244594 @default.
- W2980454921 cites W2794105678 @default.
- W2980454921 cites W2887221873 @default.
- W2980454921 cites W2887442076 @default.
- W2980454921 cites W2890292344 @default.
- W2980454921 cites W2890301877 @default.
- W2980454921 cites W2924358573 @default.
- W2980454921 cites W2937765800 @default.
- W2980454921 cites W2951538786 @default.
- W2980454921 cites W2964074174 @default.
- W2980454921 cites W2975601106 @default.
- W2980454921 cites W3098834468 @default.
- W2980454921 cites W3101229196 @default.
- W2980454921 cites W3103042558 @default.
- W2980454921 cites W3124986623 @default.
- W2980454921 doi "https://doi.org/10.1016/j.bbagrm.2019.194418" @default.
- W2980454921 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7166149" @default.
- W2980454921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31639475" @default.
- W2980454921 hasPublicationYear "2020" @default.
- W2980454921 type Work @default.
- W2980454921 sameAs 2980454921 @default.