Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988342776> ?p ?o ?g. }
- W2988342776 endingPage "684" @default.
- W2988342776 startingPage "684" @default.
- W2988342776 abstract "A scheme for wind-speed simulation during typhoons in Taiwan is highly desirable, considering the effects of the powerful winds accompanying the severe typhoons. The developed combination of deep learning (DL) algorithms with a weather-forecasting numerical model can be used to determine wind speed in a rapid simulation process. Here, the Weather Research and Forecasting (WRF) numerical model was employed as the numerical simulation-based model for precomputing solutions to determine the wind velocity at arbitrary positions where the wind cannot be measured. The deep neural network (DNN) was used for constructing the DL-based wind-velocity simulation model. The experimental area of Northern Taiwan was used for the simulation. Regarding the complex typhoon system, the collected data comprised the typhoon tracks, FNL (Final) Operational Global Analysis Data for the WRF model, typhoon characteristics, and ground weather data. This study included 47 typhoon events that occurred over 2000–2017. Three measures were used to analyze the models for identifying optimal performance levels: Mean absolute error, root mean squared error, and correlation coefficient. This study compared observations with the WRF numerical model and DNN model. The results revealed that (1) simulations by using the WRF-based models were satisfactorily consistent with the observed data and (2) simulations by using the DNN model were considerably consistent with those of the WRF-based model. Consequently, the proposed DNN combined with WRF model can be effectively used in simulations of wind velocity at arbitrary positions of study area." @default.
- W2988342776 created "2019-11-22" @default.
- W2988342776 creator A5039739337 @default.
- W2988342776 date "2019-11-07" @default.
- W2988342776 modified "2023-10-13" @default.
- W2988342776 title "Study on Wind Simulations Using Deep Learning Techniques during Typhoons: A Case Study of Northern Taiwan" @default.
- W2988342776 cites W1032614754 @default.
- W2988342776 cites W1705374184 @default.
- W2988342776 cites W1973778471 @default.
- W2988342776 cites W2006161877 @default.
- W2988342776 cites W2008757278 @default.
- W2988342776 cites W2014840824 @default.
- W2988342776 cites W2021350270 @default.
- W2988342776 cites W2021592094 @default.
- W2988342776 cites W2033126466 @default.
- W2988342776 cites W2036384654 @default.
- W2988342776 cites W2042919630 @default.
- W2988342776 cites W2053884721 @default.
- W2988342776 cites W2055938690 @default.
- W2988342776 cites W2060376868 @default.
- W2988342776 cites W2067441511 @default.
- W2988342776 cites W2078690500 @default.
- W2988342776 cites W2082104547 @default.
- W2988342776 cites W2094317913 @default.
- W2988342776 cites W2096950989 @default.
- W2988342776 cites W2103559015 @default.
- W2988342776 cites W2115354336 @default.
- W2988342776 cites W2128225313 @default.
- W2988342776 cites W2136109965 @default.
- W2988342776 cites W2136922672 @default.
- W2988342776 cites W2138009180 @default.
- W2988342776 cites W2166693625 @default.
- W2988342776 cites W2295342167 @default.
- W2988342776 cites W2518085669 @default.
- W2988342776 cites W2529143702 @default.
- W2988342776 cites W2557397414 @default.
- W2988342776 cites W2587770572 @default.
- W2988342776 cites W2604319603 @default.
- W2988342776 cites W2614963644 @default.
- W2988342776 cites W2620189642 @default.
- W2988342776 cites W2746797987 @default.
- W2988342776 cites W2770728642 @default.
- W2988342776 cites W2797869508 @default.
- W2988342776 cites W2890283866 @default.
- W2988342776 cites W2942992931 @default.
- W2988342776 cites W2944779664 @default.
- W2988342776 cites W2956635826 @default.
- W2988342776 cites W2962736509 @default.
- W2988342776 cites W639144257 @default.
- W2988342776 doi "https://doi.org/10.3390/atmos10110684" @default.
- W2988342776 hasPublicationYear "2019" @default.
- W2988342776 type Work @default.
- W2988342776 sameAs 2988342776 @default.
- W2988342776 citedByCount "8" @default.
- W2988342776 countsByYear W29883427762020 @default.
- W2988342776 countsByYear W29883427762021 @default.
- W2988342776 countsByYear W29883427762022 @default.
- W2988342776 crossrefType "journal-article" @default.
- W2988342776 hasAuthorship W2988342776A5039739337 @default.
- W2988342776 hasBestOaLocation W29883427761 @default.
- W2988342776 hasConcept C105795698 @default.
- W2988342776 hasConcept C119857082 @default.
- W2988342776 hasConcept C133204551 @default.
- W2988342776 hasConcept C139945424 @default.
- W2988342776 hasConcept C147947694 @default.
- W2988342776 hasConcept C153294291 @default.
- W2988342776 hasConcept C154945302 @default.
- W2988342776 hasConcept C161067210 @default.
- W2988342776 hasConcept C181654704 @default.
- W2988342776 hasConcept C205649164 @default.
- W2988342776 hasConcept C2780092901 @default.
- W2988342776 hasConcept C33923547 @default.
- W2988342776 hasConcept C39432304 @default.
- W2988342776 hasConcept C41008148 @default.
- W2988342776 hasConcept C44154836 @default.
- W2988342776 hasConcept C500300565 @default.
- W2988342776 hasConcept C50644808 @default.
- W2988342776 hasConceptScore W2988342776C105795698 @default.
- W2988342776 hasConceptScore W2988342776C119857082 @default.
- W2988342776 hasConceptScore W2988342776C133204551 @default.
- W2988342776 hasConceptScore W2988342776C139945424 @default.
- W2988342776 hasConceptScore W2988342776C147947694 @default.
- W2988342776 hasConceptScore W2988342776C153294291 @default.
- W2988342776 hasConceptScore W2988342776C154945302 @default.
- W2988342776 hasConceptScore W2988342776C161067210 @default.
- W2988342776 hasConceptScore W2988342776C181654704 @default.
- W2988342776 hasConceptScore W2988342776C205649164 @default.
- W2988342776 hasConceptScore W2988342776C2780092901 @default.
- W2988342776 hasConceptScore W2988342776C33923547 @default.
- W2988342776 hasConceptScore W2988342776C39432304 @default.
- W2988342776 hasConceptScore W2988342776C41008148 @default.
- W2988342776 hasConceptScore W2988342776C44154836 @default.
- W2988342776 hasConceptScore W2988342776C500300565 @default.
- W2988342776 hasConceptScore W2988342776C50644808 @default.
- W2988342776 hasIssue "11" @default.
- W2988342776 hasLocation W29883427761 @default.
- W2988342776 hasOpenAccess W2988342776 @default.
- W2988342776 hasPrimaryLocation W29883427761 @default.