Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020647364> ?p ?o ?g. }
- W3020647364 endingPage "107857" @default.
- W3020647364 startingPage "107857" @default.
- W3020647364 abstract "The size, shape and distribution of microstructures (second phase particles, grains) play an important role in the mechanical properties of alloy products. So, it is important to detect grains and second phase particles precisely. In this paper, we use multi-task learning and generative adversarial network (GAN) to realize the segmentation of the second phase and the boundary detection of grains at the same time. Specifically, a richer convolutional features (RCF) architecture based on multi-task learning is designed for preliminary detection and segmentation. Then, a generative adversarial network is employed to fine tune the hidden grain boundaries that covered by the second phase. Finally, a quantitative analysis module is designed to extract quantitative indicators according to the results of the two deep networks. We achieve 96.65% (accuracy), 0.8325 (IoU), 0.7824 (AJI) in the segmentation task and 92.65% (precision), 91.90% (recall) in the boundary detection task, which reach the state-of-the-art meanwhile." @default.
- W3020647364 created "2020-05-01" @default.
- W3020647364 creator A5014297402 @default.
- W3020647364 creator A5017517029 @default.
- W3020647364 creator A5039127636 @default.
- W3020647364 creator A5053320254 @default.
- W3020647364 date "2020-10-01" @default.
- W3020647364 modified "2023-10-06" @default.
- W3020647364 title "Grain boundary detection and second phase segmentation based on multi-task learning and generative adversarial network" @default.
- W3020647364 cites W1141054642 @default.
- W3020647364 cites W127809959 @default.
- W3020647364 cites W1901129140 @default.
- W3020647364 cites W1990546976 @default.
- W3020647364 cites W1994697672 @default.
- W3020647364 cites W1996070955 @default.
- W3020647364 cites W2022502069 @default.
- W3020647364 cites W2029411311 @default.
- W3020647364 cites W2049515831 @default.
- W3020647364 cites W2059852934 @default.
- W3020647364 cites W2061045392 @default.
- W3020647364 cites W2110158442 @default.
- W3020647364 cites W2115245019 @default.
- W3020647364 cites W2116013899 @default.
- W3020647364 cites W2124260943 @default.
- W3020647364 cites W2126237481 @default.
- W3020647364 cites W2132083787 @default.
- W3020647364 cites W2139212933 @default.
- W3020647364 cites W2145023731 @default.
- W3020647364 cites W2236565036 @default.
- W3020647364 cites W2592905743 @default.
- W3020647364 cites W2595340064 @default.
- W3020647364 cites W2792384468 @default.
- W3020647364 cites W2796672611 @default.
- W3020647364 cites W2891109850 @default.
- W3020647364 cites W2893051014 @default.
- W3020647364 cites W2907898798 @default.
- W3020647364 cites W2955110667 @default.
- W3020647364 cites W2980694887 @default.
- W3020647364 doi "https://doi.org/10.1016/j.measurement.2020.107857" @default.
- W3020647364 hasPublicationYear "2020" @default.
- W3020647364 type Work @default.
- W3020647364 sameAs 3020647364 @default.
- W3020647364 citedByCount "17" @default.
- W3020647364 countsByYear W30206473642020 @default.
- W3020647364 countsByYear W30206473642021 @default.
- W3020647364 countsByYear W30206473642022 @default.
- W3020647364 countsByYear W30206473642023 @default.
- W3020647364 crossrefType "journal-article" @default.
- W3020647364 hasAuthorship W3020647364A5014297402 @default.
- W3020647364 hasAuthorship W3020647364A5017517029 @default.
- W3020647364 hasAuthorship W3020647364A5039127636 @default.
- W3020647364 hasAuthorship W3020647364A5053320254 @default.
- W3020647364 hasConcept C108583219 @default.
- W3020647364 hasConcept C119857082 @default.
- W3020647364 hasConcept C121332964 @default.
- W3020647364 hasConcept C127413603 @default.
- W3020647364 hasConcept C134306372 @default.
- W3020647364 hasConcept C153180895 @default.
- W3020647364 hasConcept C154945302 @default.
- W3020647364 hasConcept C191897082 @default.
- W3020647364 hasConcept C192562407 @default.
- W3020647364 hasConcept C201995342 @default.
- W3020647364 hasConcept C2780451532 @default.
- W3020647364 hasConcept C33923547 @default.
- W3020647364 hasConcept C37736160 @default.
- W3020647364 hasConcept C39890363 @default.
- W3020647364 hasConcept C41008148 @default.
- W3020647364 hasConcept C44280652 @default.
- W3020647364 hasConcept C47908070 @default.
- W3020647364 hasConcept C62354387 @default.
- W3020647364 hasConcept C62520636 @default.
- W3020647364 hasConcept C81363708 @default.
- W3020647364 hasConcept C87976508 @default.
- W3020647364 hasConcept C89600930 @default.
- W3020647364 hasConceptScore W3020647364C108583219 @default.
- W3020647364 hasConceptScore W3020647364C119857082 @default.
- W3020647364 hasConceptScore W3020647364C121332964 @default.
- W3020647364 hasConceptScore W3020647364C127413603 @default.
- W3020647364 hasConceptScore W3020647364C134306372 @default.
- W3020647364 hasConceptScore W3020647364C153180895 @default.
- W3020647364 hasConceptScore W3020647364C154945302 @default.
- W3020647364 hasConceptScore W3020647364C191897082 @default.
- W3020647364 hasConceptScore W3020647364C192562407 @default.
- W3020647364 hasConceptScore W3020647364C201995342 @default.
- W3020647364 hasConceptScore W3020647364C2780451532 @default.
- W3020647364 hasConceptScore W3020647364C33923547 @default.
- W3020647364 hasConceptScore W3020647364C37736160 @default.
- W3020647364 hasConceptScore W3020647364C39890363 @default.
- W3020647364 hasConceptScore W3020647364C41008148 @default.
- W3020647364 hasConceptScore W3020647364C44280652 @default.
- W3020647364 hasConceptScore W3020647364C47908070 @default.
- W3020647364 hasConceptScore W3020647364C62354387 @default.
- W3020647364 hasConceptScore W3020647364C62520636 @default.
- W3020647364 hasConceptScore W3020647364C81363708 @default.
- W3020647364 hasConceptScore W3020647364C87976508 @default.
- W3020647364 hasConceptScore W3020647364C89600930 @default.
- W3020647364 hasLocation W30206473641 @default.
- W3020647364 hasOpenAccess W3020647364 @default.