Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032920083> ?p ?o ?g. }
- W3032920083 endingPage "3519" @default.
- W3032920083 startingPage "3507" @default.
- W3032920083 abstract "Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors. In this research, we propose a new multi-modal framework for vessel segmentation called ELEMENT (vEsseL sEgmentation using Machine lEarning and coNnecTivity). This framework consists of feature extraction and pixel-based classification using region growing and machine learning. The proposed features capture complementary evidence based on grey level and vessel connectivity properties. The latter information is seamlessly propagated through the pixels at the classification phase. ELEMENT reduces inconsistencies and speeds up the segmentation throughput. We analyze and compare the performance of the proposed approach against state-of-the-art vessel segmentation algorithms in three major groups of experiments, for each of the ocular modalities. Our method produced higher overall performance, with an overall accuracy of 97.40%, compared to 25 of the 26 state-of-the-art approaches, including six works based on deep learning, evaluated on the widely known DRIVE fundus image dataset. In the case of the STARE, CHASE-DB, VAMPIRE FA, IOSTAR SLO and RC-SLO datasets, the proposed framework outperformed all of the state-of-the-art methods with accuracies of 98.27%, 97.78%, 98.34%, 98.04% and 98.35%, respectively." @default.
- W3032920083 created "2020-06-12" @default.
- W3032920083 creator A5041749289 @default.
- W3032920083 creator A5048172675 @default.
- W3032920083 creator A5083852325 @default.
- W3032920083 date "2020-12-01" @default.
- W3032920083 modified "2023-10-05" @default.
- W3032920083 title "ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach" @default.
- W3032920083 cites W1484720787 @default.
- W3032920083 cites W1549562450 @default.
- W3032920083 cites W1577027628 @default.
- W3032920083 cites W1832540156 @default.
- W3032920083 cites W1856792630 @default.
- W3032920083 cites W1976047074 @default.
- W3032920083 cites W1978038874 @default.
- W3032920083 cites W1980010757 @default.
- W3032920083 cites W1980283202 @default.
- W3032920083 cites W1982882472 @default.
- W3032920083 cites W1994514248 @default.
- W3032920083 cites W1995730340 @default.
- W3032920083 cites W2034356480 @default.
- W3032920083 cites W2036594540 @default.
- W3032920083 cites W2037776979 @default.
- W3032920083 cites W2039095780 @default.
- W3032920083 cites W2045227075 @default.
- W3032920083 cites W2051578148 @default.
- W3032920083 cites W2074640356 @default.
- W3032920083 cites W2093545979 @default.
- W3032920083 cites W2104195344 @default.
- W3032920083 cites W2105923875 @default.
- W3032920083 cites W2109037308 @default.
- W3032920083 cites W2112783556 @default.
- W3032920083 cites W2115680416 @default.
- W3032920083 cites W2116628223 @default.
- W3032920083 cites W2118484730 @default.
- W3032920083 cites W2122644916 @default.
- W3032920083 cites W2123434300 @default.
- W3032920083 cites W2129534965 @default.
- W3032920083 cites W2139915254 @default.
- W3032920083 cites W2142171703 @default.
- W3032920083 cites W2145305441 @default.
- W3032920083 cites W2148284840 @default.
- W3032920083 cites W2150134853 @default.
- W3032920083 cites W2150769593 @default.
- W3032920083 cites W2154890156 @default.
- W3032920083 cites W2162097093 @default.
- W3032920083 cites W2163344010 @default.
- W3032920083 cites W2168835044 @default.
- W3032920083 cites W2170092083 @default.
- W3032920083 cites W2171459511 @default.
- W3032920083 cites W2206167351 @default.
- W3032920083 cites W2320230300 @default.
- W3032920083 cites W2327793514 @default.
- W3032920083 cites W2433259561 @default.
- W3032920083 cites W2488605601 @default.
- W3032920083 cites W2526099606 @default.
- W3032920083 cites W2565938754 @default.
- W3032920083 cites W2617826870 @default.
- W3032920083 cites W2620722267 @default.
- W3032920083 cites W2665866248 @default.
- W3032920083 cites W2750911434 @default.
- W3032920083 cites W2768610230 @default.
- W3032920083 cites W2783003665 @default.
- W3032920083 cites W2793284597 @default.
- W3032920083 cites W2796340169 @default.
- W3032920083 cites W2802336642 @default.
- W3032920083 cites W2802388893 @default.
- W3032920083 cites W2806038387 @default.
- W3032920083 cites W2884292375 @default.
- W3032920083 cites W2892047753 @default.
- W3032920083 cites W2898910301 @default.
- W3032920083 cites W2940427983 @default.
- W3032920083 cites W2946570412 @default.
- W3032920083 cites W2954986968 @default.
- W3032920083 cites W2971614929 @default.
- W3032920083 cites W3099113392 @default.
- W3032920083 cites W4226459256 @default.
- W3032920083 cites W595827679 @default.
- W3032920083 cites W2070079537 @default.
- W3032920083 doi "https://doi.org/10.1109/jbhi.2020.2999257" @default.
- W3032920083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32750920" @default.
- W3032920083 hasPublicationYear "2020" @default.
- W3032920083 type Work @default.
- W3032920083 sameAs 3032920083 @default.
- W3032920083 citedByCount "34" @default.
- W3032920083 countsByYear W30329200832020 @default.
- W3032920083 countsByYear W30329200832021 @default.
- W3032920083 countsByYear W30329200832022 @default.
- W3032920083 countsByYear W30329200832023 @default.
- W3032920083 crossrefType "journal-article" @default.
- W3032920083 hasAuthorship W3032920083A5041749289 @default.
- W3032920083 hasAuthorship W3032920083A5048172675 @default.
- W3032920083 hasAuthorship W3032920083A5083852325 @default.
- W3032920083 hasConcept C118487528 @default.
- W3032920083 hasConcept C124504099 @default.
- W3032920083 hasConcept C138885662 @default.
- W3032920083 hasConcept C153180895 @default.
- W3032920083 hasConcept C154945302 @default.