Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034696023> ?p ?o ?g. }
- W3034696023 endingPage "778" @default.
- W3034696023 startingPage "765" @default.
- W3034696023 abstract "Arbuscular mycorrhizal fungi (AMF) can carry thousands of nuclei in their cells at all times. The number, shape, and frequency of these nuclei vary substantially among and within species. Some AMF strains, referred to as AMF dikaryons, carry two distinct nuclear genotypes within their cells. The frequency of two coexisting genotypes may vary across AMF dikaryons, raising questions about its significance for mycorrhizal symbiosis. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that continuously carry thousands of nuclei in their spores and hyphae. This unique cellular biology raises fundamental questions regarding their nuclear dynamics. This review aims to address these by synthesizing current knowledge of nuclear content and behavior in these ubiquitous soil fungi. Overall, we find that that nuclear counts, as well as the nuclei shape and organization, vary drastically both within and among species in this group. By comparing these features with those of other fungi, we highlight unique aspects of the AMF nuclear biology that require further attention. The potential implications of the observed nuclear variability for the biology and evolution of these widespread plant symbionts are discussed. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that continuously carry thousands of nuclei in their spores and hyphae. This unique cellular biology raises fundamental questions regarding their nuclear dynamics. This review aims to address these by synthesizing current knowledge of nuclear content and behavior in these ubiquitous soil fungi. Overall, we find that that nuclear counts, as well as the nuclei shape and organization, vary drastically both within and among species in this group. By comparing these features with those of other fungi, we highlight unique aspects of the AMF nuclear biology that require further attention. The potential implications of the observed nuclear variability for the biology and evolution of these widespread plant symbionts are discussed. specialized fungal cell that allows hyphae to penetrate the plant tissue. highly branched haustoria-like structures formed in cortical root cells. Arbuscules are the centers of the bio-directional nutrient exchange between the AMF and the host. group of higher fungi that have septate hyphae and spores borne in microscopic cells called asci. function which allows for degradation of cellular components. group of higher fungi that have septate hyphae and spores borne on a basidium. also known as nonseptate hyphae, tube-looking structures, created by cell walls containing large amount of chitin. They contain multiple nuclei organelles and cytoplasm. Coenocytic hyphae are considered as large multinucleate cells. fungi that grow as a mass of branching filamentous structures called hyphae. the germinating hyphae originating from a spore or a spore subtending hyphae. the process in which new growth in the form of hyphae is produced from a fungal spore. the fusion of two, normally haploid, compatible nuclei. destructive fragmentation of the nucleus, usually during cell death. genetic regions that govern sexual compatibility in fungi. type of cell division in sexually reproducing organisms that results in four cells carrying one copy of each chromosome. the symbiotic association between a mycorrhizal fungus and the root system of a compatible plant host. autophagy targeting nuclei. group of nuclei sharing the same genetic information. nuclei undergoing mitosis featured by a graded spatial variation (mitotic wave). the number of chromosome sets, present in a single nucleus. (singular, septum); internal walls separating fungal hyphae into hyphal cells (or compartments). following hyphal fusion, compatible haploid nuclei can fuse and generate novel genetic combinations. Sexual compatibility involves recognition of compatible mates (govern by mating type loci in fungi), karyogamy and ploidy changes, and meiosis. successful hyphal fusion (also called anastomosis) between two genetically distinct strains. group of plant hormones that stimulate spore germination and hyphal elongation and branching of some AMF. sexual spores of zygomycetes following fusion of haploid cells." @default.
- W3034696023 created "2020-06-19" @default.
- W3034696023 creator A5023023630 @default.
- W3034696023 creator A5072824750 @default.
- W3034696023 creator A5074753644 @default.
- W3034696023 creator A5078080948 @default.
- W3034696023 creator A5085686692 @default.
- W3034696023 date "2020-08-01" @default.
- W3034696023 modified "2023-10-16" @default.
- W3034696023 title "Nuclear Dynamics in the Arbuscular Mycorrhizal Fungi" @default.
- W3034696023 cites W1507350102 @default.
- W3034696023 cites W1543981084 @default.
- W3034696023 cites W1654478299 @default.
- W3034696023 cites W1892281671 @default.
- W3034696023 cites W1919157865 @default.
- W3034696023 cites W1953508654 @default.
- W3034696023 cites W1970054864 @default.
- W3034696023 cites W1971729567 @default.
- W3034696023 cites W1971789941 @default.
- W3034696023 cites W1974537424 @default.
- W3034696023 cites W1977719225 @default.
- W3034696023 cites W1985331801 @default.
- W3034696023 cites W1986475898 @default.
- W3034696023 cites W1987758358 @default.
- W3034696023 cites W1990155217 @default.
- W3034696023 cites W1992129648 @default.
- W3034696023 cites W1994872435 @default.
- W3034696023 cites W1997418539 @default.
- W3034696023 cites W2002182776 @default.
- W3034696023 cites W2003003290 @default.
- W3034696023 cites W2005558624 @default.
- W3034696023 cites W2010343006 @default.
- W3034696023 cites W2014542845 @default.
- W3034696023 cites W2026895445 @default.
- W3034696023 cites W2029509580 @default.
- W3034696023 cites W2032057897 @default.
- W3034696023 cites W2033538700 @default.
- W3034696023 cites W2042416676 @default.
- W3034696023 cites W2044546967 @default.
- W3034696023 cites W2046756835 @default.
- W3034696023 cites W2046950312 @default.
- W3034696023 cites W2048854552 @default.
- W3034696023 cites W2056108769 @default.
- W3034696023 cites W2056484121 @default.
- W3034696023 cites W2058560271 @default.
- W3034696023 cites W2070677730 @default.
- W3034696023 cites W2075768471 @default.
- W3034696023 cites W2078008047 @default.
- W3034696023 cites W2079345734 @default.
- W3034696023 cites W2084172910 @default.
- W3034696023 cites W2086460863 @default.
- W3034696023 cites W2089288509 @default.
- W3034696023 cites W2090114393 @default.
- W3034696023 cites W2097937567 @default.
- W3034696023 cites W2109015573 @default.
- W3034696023 cites W2117361319 @default.
- W3034696023 cites W2117657823 @default.
- W3034696023 cites W2117950909 @default.
- W3034696023 cites W2125191950 @default.
- W3034696023 cites W2147171564 @default.
- W3034696023 cites W2147221354 @default.
- W3034696023 cites W2153713008 @default.
- W3034696023 cites W2155384254 @default.
- W3034696023 cites W2161914508 @default.
- W3034696023 cites W2189447818 @default.
- W3034696023 cites W2298168977 @default.
- W3034696023 cites W2312288921 @default.
- W3034696023 cites W2316850387 @default.
- W3034696023 cites W2326549035 @default.
- W3034696023 cites W2327221237 @default.
- W3034696023 cites W2331340692 @default.
- W3034696023 cites W2331773333 @default.
- W3034696023 cites W2488184776 @default.
- W3034696023 cites W2530283331 @default.
- W3034696023 cites W2553626129 @default.
- W3034696023 cites W2557222455 @default.
- W3034696023 cites W2622543736 @default.
- W3034696023 cites W2732583978 @default.
- W3034696023 cites W2801088906 @default.
- W3034696023 cites W2807716495 @default.
- W3034696023 cites W2902197423 @default.
- W3034696023 cites W2908784685 @default.
- W3034696023 cites W2947163204 @default.
- W3034696023 cites W2997068692 @default.
- W3034696023 cites W2999399185 @default.
- W3034696023 cites W3017188240 @default.
- W3034696023 cites W3021717266 @default.
- W3034696023 cites W4240720533 @default.
- W3034696023 doi "https://doi.org/10.1016/j.tplants.2020.05.002" @default.
- W3034696023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32534868" @default.
- W3034696023 hasPublicationYear "2020" @default.
- W3034696023 type Work @default.
- W3034696023 sameAs 3034696023 @default.
- W3034696023 citedByCount "36" @default.
- W3034696023 countsByYear W30346960232020 @default.
- W3034696023 countsByYear W30346960232021 @default.
- W3034696023 countsByYear W30346960232022 @default.
- W3034696023 countsByYear W30346960232023 @default.