Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037190016> ?p ?o ?g. }
- W3037190016 endingPage "97" @default.
- W3037190016 startingPage "75" @default.
- W3037190016 abstract "Based on multiple levels of granularity, the notion of sequential three-way granular computing focuses on a multiple stages of thinking, problem-solving, and information processing in threes. This paper interprets, represents, and implements sequential three-way granular computing by a framework of temporal-spatial multi-granularity learning, which is described with the temporality of data and the spatiality of parameters. In real-world decision-making, such a sequential approach is useful to make faster decisions for some objects with the lower cost of decision process and the acceptable accuracy when information is insufficient or unavailable. However, the cost of time-consuming computation for hierarchical multilevel granularity is our concern. To address this issue, we utilize a local strategy to accelerate a sequence of neighborhood-based granulation induced by Gaussian kernel function. Subsequently, local three-way decision rules are investigated based on the Bayesian minimum risk criterion. Moreover, by the construction of a novel local trisection model, we propose a local sequential approach of three-way granular computing under a temporal-spatial multilevel granular structure. Finally, a series of comparative experiments between global and local perspectives is carried out to verify the effectiveness of our proposed models." @default.
- W3037190016 created "2020-07-02" @default.
- W3037190016 creator A5008296187 @default.
- W3037190016 creator A5042597849 @default.
- W3037190016 creator A5059699243 @default.
- W3037190016 creator A5070559820 @default.
- W3037190016 creator A5079171749 @default.
- W3037190016 date "2020-12-01" @default.
- W3037190016 modified "2023-09-27" @default.
- W3037190016 title "Local temporal-spatial multi-granularity learning for sequential three-way granular computing" @default.
- W3037190016 cites W1808687169 @default.
- W3037190016 cites W2056784354 @default.
- W3037190016 cites W2071255876 @default.
- W3037190016 cites W2162755671 @default.
- W3037190016 cites W2175162522 @default.
- W3037190016 cites W2217596628 @default.
- W3037190016 cites W2261233885 @default.
- W3037190016 cites W2292553612 @default.
- W3037190016 cites W2297889545 @default.
- W3037190016 cites W2345465422 @default.
- W3037190016 cites W2563233531 @default.
- W3037190016 cites W2600072788 @default.
- W3037190016 cites W2600420962 @default.
- W3037190016 cites W2737801118 @default.
- W3037190016 cites W2792234535 @default.
- W3037190016 cites W2793566013 @default.
- W3037190016 cites W2795686572 @default.
- W3037190016 cites W2799813871 @default.
- W3037190016 cites W2801786879 @default.
- W3037190016 cites W2888019619 @default.
- W3037190016 cites W2892294644 @default.
- W3037190016 cites W2899640688 @default.
- W3037190016 cites W2900648357 @default.
- W3037190016 cites W2904406045 @default.
- W3037190016 cites W2912707296 @default.
- W3037190016 cites W2913485292 @default.
- W3037190016 cites W2916784550 @default.
- W3037190016 cites W2930693451 @default.
- W3037190016 cites W2933160470 @default.
- W3037190016 cites W2942289617 @default.
- W3037190016 cites W2944017292 @default.
- W3037190016 cites W2945341907 @default.
- W3037190016 cites W2945948180 @default.
- W3037190016 cites W2946254831 @default.
- W3037190016 cites W2952935381 @default.
- W3037190016 cites W2972050006 @default.
- W3037190016 cites W2972939894 @default.
- W3037190016 cites W2973351188 @default.
- W3037190016 cites W2989196101 @default.
- W3037190016 cites W3035596056 @default.
- W3037190016 cites W4255833381 @default.
- W3037190016 doi "https://doi.org/10.1016/j.ins.2020.06.020" @default.
- W3037190016 hasPublicationYear "2020" @default.
- W3037190016 type Work @default.
- W3037190016 sameAs 3037190016 @default.
- W3037190016 citedByCount "23" @default.
- W3037190016 countsByYear W30371900162020 @default.
- W3037190016 countsByYear W30371900162021 @default.
- W3037190016 countsByYear W30371900162022 @default.
- W3037190016 countsByYear W30371900162023 @default.
- W3037190016 crossrefType "journal-article" @default.
- W3037190016 hasAuthorship W3037190016A5008296187 @default.
- W3037190016 hasAuthorship W3037190016A5042597849 @default.
- W3037190016 hasAuthorship W3037190016A5059699243 @default.
- W3037190016 hasAuthorship W3037190016A5070559820 @default.
- W3037190016 hasAuthorship W3037190016A5079171749 @default.
- W3037190016 hasConcept C111012933 @default.
- W3037190016 hasConcept C111919701 @default.
- W3037190016 hasConcept C11413529 @default.
- W3037190016 hasConcept C114614502 @default.
- W3037190016 hasConcept C119857082 @default.
- W3037190016 hasConcept C124101348 @default.
- W3037190016 hasConcept C14036430 @default.
- W3037190016 hasConcept C154945302 @default.
- W3037190016 hasConcept C17209119 @default.
- W3037190016 hasConcept C177774035 @default.
- W3037190016 hasConcept C2778112365 @default.
- W3037190016 hasConcept C33923547 @default.
- W3037190016 hasConcept C41008148 @default.
- W3037190016 hasConcept C45374587 @default.
- W3037190016 hasConcept C54355233 @default.
- W3037190016 hasConcept C74193536 @default.
- W3037190016 hasConcept C78458016 @default.
- W3037190016 hasConcept C80444323 @default.
- W3037190016 hasConcept C86803240 @default.
- W3037190016 hasConceptScore W3037190016C111012933 @default.
- W3037190016 hasConceptScore W3037190016C111919701 @default.
- W3037190016 hasConceptScore W3037190016C11413529 @default.
- W3037190016 hasConceptScore W3037190016C114614502 @default.
- W3037190016 hasConceptScore W3037190016C119857082 @default.
- W3037190016 hasConceptScore W3037190016C124101348 @default.
- W3037190016 hasConceptScore W3037190016C14036430 @default.
- W3037190016 hasConceptScore W3037190016C154945302 @default.
- W3037190016 hasConceptScore W3037190016C17209119 @default.
- W3037190016 hasConceptScore W3037190016C177774035 @default.
- W3037190016 hasConceptScore W3037190016C2778112365 @default.
- W3037190016 hasConceptScore W3037190016C33923547 @default.
- W3037190016 hasConceptScore W3037190016C41008148 @default.