Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044514553> ?p ?o ?g. }
- W3044514553 endingPage "8725" @default.
- W3044514553 startingPage "8709" @default.
- W3044514553 abstract "Abstract. Mean age of air (AoA) is a diagnostic of transport along the stratospheric Brewer–Dobson circulation. While models consistently show negative trends, long-term time series (1975–2016) of AoA derived from observations show non-significant positive trends in mean AoA in the Northern Hemisphere. This discrepancy between observed and modelled mean AoA trends is still not resolved. There are uncertainties and assumptions required when deriving AoA from trace gas observations. At the same time, AoA from climate models is subject to uncertainties, too. In this paper, we focus on the uncertainties due to the parameter selection in the method that is used to derive mean AoA from SF6 measurements in Engel et al. (2009, 2017). To correct for the non-linear increase in SF6 concentrations, a quadratic fit to the time series at the reference location, i.e. the tropical surface, is used. For this derivation, the width of the AoA distribution (age spectrum) has to be assumed. In addition, to choose the number of years the quadratic fit is performed for, the fraction of the age spectrum to be considered has to be assumed. Even though the uncertainty range due to all different aspects has already been taken into account for the total errors in the AoA values, the systematic influence of the parameter selection on AoA trends is described for the first time in the present study. For this, we use the EMAC (ECHAM MESSy Atmospheric Chemistry) climate model as a test bed, where AoA derived from a linear tracer is available as a reference and modelled age spectra exist to diagnose the actual spatial age spectra widths. The comparison of mean AoA from the linear tracer with mean AoA from a SF6 tracer shows systematic deviations specifically in the trends due to the selection of the parameters. However, for an appropriate parameter selection, good agreement for both mean AoA and its trend can be found, with deviations of about 1 % in mean AoA and 12 % in AoA trend. In addition, a method to derive mean AoA is evaluated that applies a convolution to the reference time series. The resulting mean AoA and its trend only depend on an assumption about the ratio of moments. Also in that case, it is found that the larger the ratio of moments, the more the AoA trend gravitates towards the negative. The linear tracer and SF6 AoA are found to agree within 0.3 % in the mean and 6 % in the trend. The different methods and parameter selections were then applied to the balloon-borne SF6 and CO2 observations. We found the same systematic changes in mean AoA trend dependent on the specific selection. When applying a parameter choice that is suggested by the model results, the AoA trend is reduced from 0.15 to 0.07 years per decade. It illustrates that correctly constraining those parameters is crucial for correct mean AoA and trend estimates and still remains a challenge in the real atmosphere." @default.
- W3044514553 created "2020-07-29" @default.
- W3044514553 creator A5046339665 @default.
- W3044514553 creator A5050896940 @default.
- W3044514553 creator A5054896535 @default.
- W3044514553 creator A5061333345 @default.
- W3044514553 creator A5067727328 @default.
- W3044514553 date "2020-07-23" @default.
- W3044514553 modified "2023-10-18" @default.
- W3044514553 title "Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF<sub>6</sub>" @default.
- W3044514553 cites W1547332442 @default.
- W3044514553 cites W1690787865 @default.
- W3044514553 cites W1971378383 @default.
- W3044514553 cites W1978358367 @default.
- W3044514553 cites W1990735684 @default.
- W3044514553 cites W1993100662 @default.
- W3044514553 cites W1994987090 @default.
- W3044514553 cites W2006165291 @default.
- W3044514553 cites W2007365238 @default.
- W3044514553 cites W2012777841 @default.
- W3044514553 cites W2024921643 @default.
- W3044514553 cites W2042290651 @default.
- W3044514553 cites W2042694696 @default.
- W3044514553 cites W2048476229 @default.
- W3044514553 cites W2049089050 @default.
- W3044514553 cites W2066638567 @default.
- W3044514553 cites W2075948965 @default.
- W3044514553 cites W2077903547 @default.
- W3044514553 cites W2078731804 @default.
- W3044514553 cites W2080398550 @default.
- W3044514553 cites W2101886054 @default.
- W3044514553 cites W2114216087 @default.
- W3044514553 cites W2115983823 @default.
- W3044514553 cites W2116020803 @default.
- W3044514553 cites W2120412309 @default.
- W3044514553 cites W2126683242 @default.
- W3044514553 cites W2130355529 @default.
- W3044514553 cites W2138590983 @default.
- W3044514553 cites W2140296883 @default.
- W3044514553 cites W2142054202 @default.
- W3044514553 cites W2155647793 @default.
- W3044514553 cites W2172096500 @default.
- W3044514553 cites W2267397677 @default.
- W3044514553 cites W2346170627 @default.
- W3044514553 cites W2509103588 @default.
- W3044514553 cites W2510586650 @default.
- W3044514553 cites W2519569668 @default.
- W3044514553 cites W2587397790 @default.
- W3044514553 cites W2588353936 @default.
- W3044514553 cites W2591025648 @default.
- W3044514553 cites W2600908681 @default.
- W3044514553 cites W2606017004 @default.
- W3044514553 cites W2746084435 @default.
- W3044514553 cites W2754637981 @default.
- W3044514553 cites W2914305062 @default.
- W3044514553 cites W2940374045 @default.
- W3044514553 doi "https://doi.org/10.5194/acp-20-8709-2020" @default.
- W3044514553 hasPublicationYear "2020" @default.
- W3044514553 type Work @default.
- W3044514553 sameAs 3044514553 @default.
- W3044514553 citedByCount "16" @default.
- W3044514553 countsByYear W30445145532020 @default.
- W3044514553 countsByYear W30445145532021 @default.
- W3044514553 countsByYear W30445145532022 @default.
- W3044514553 countsByYear W30445145532023 @default.
- W3044514553 crossrefType "journal-article" @default.
- W3044514553 hasAuthorship W3044514553A5046339665 @default.
- W3044514553 hasAuthorship W3044514553A5050896940 @default.
- W3044514553 hasAuthorship W3044514553A5054896535 @default.
- W3044514553 hasAuthorship W3044514553A5061333345 @default.
- W3044514553 hasAuthorship W3044514553A5067727328 @default.
- W3044514553 hasBestOaLocation W30445145531 @default.
- W3044514553 hasConcept C105795698 @default.
- W3044514553 hasConcept C121332964 @default.
- W3044514553 hasConcept C127313418 @default.
- W3044514553 hasConcept C143724316 @default.
- W3044514553 hasConcept C151730666 @default.
- W3044514553 hasConcept C153294291 @default.
- W3044514553 hasConcept C159985019 @default.
- W3044514553 hasConcept C185592680 @default.
- W3044514553 hasConcept C192562407 @default.
- W3044514553 hasConcept C204323151 @default.
- W3044514553 hasConcept C2778835443 @default.
- W3044514553 hasConcept C33923547 @default.
- W3044514553 hasConcept C39432304 @default.
- W3044514553 hasConcept C91586092 @default.
- W3044514553 hasConceptScore W3044514553C105795698 @default.
- W3044514553 hasConceptScore W3044514553C121332964 @default.
- W3044514553 hasConceptScore W3044514553C127313418 @default.
- W3044514553 hasConceptScore W3044514553C143724316 @default.
- W3044514553 hasConceptScore W3044514553C151730666 @default.
- W3044514553 hasConceptScore W3044514553C153294291 @default.
- W3044514553 hasConceptScore W3044514553C159985019 @default.
- W3044514553 hasConceptScore W3044514553C185592680 @default.
- W3044514553 hasConceptScore W3044514553C192562407 @default.
- W3044514553 hasConceptScore W3044514553C204323151 @default.
- W3044514553 hasConceptScore W3044514553C2778835443 @default.
- W3044514553 hasConceptScore W3044514553C33923547 @default.