Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049157029> ?p ?o ?g. }
- W3049157029 endingPage "2602" @default.
- W3049157029 startingPage "2602" @default.
- W3049157029 abstract "The application of drones has recently revolutionised the mapping of wetlands due to their high spatial resolution and the flexibility in capturing images. In this study, the drone imagery was used to map key vegetation communities in an Irish wetland, Clara Bog, for the spring season. The mapping, carried out through image segmentation or semantic segmentation, was performed using machine learning (ML) and deep learning (DL) algorithms. With the aim of identifying the most appropriate, cost-efficient, and accurate segmentation method, multiple ML classifiers and DL models were compared. Random forest (RF) was identified as the best pixel-based ML classifier, which provided good accuracy (≈85%) when used in conjunction graph cut algorithm for image segmentation. Amongst the DL networks, a convolutional neural network (CNN) architecture in a transfer learning framework was utilised. A combination of ResNet50 and SegNet architecture gave the best semantic segmentation results (≈90%). The high accuracy of DL networks was accompanied with significantly larger labelled training dataset, computation time and hardware requirements compared to ML classifiers with slightly lower accuracy. For specific applications such as wetland mapping where networks are required to be trained for each different site, topography, season, and other atmospheric conditions, ML classifiers proved to be a more pragmatic choice." @default.
- W3049157029 created "2020-08-21" @default.
- W3049157029 creator A5028133103 @default.
- W3049157029 creator A5059153623 @default.
- W3049157029 creator A5073716619 @default.
- W3049157029 date "2020-08-12" @default.
- W3049157029 modified "2023-10-18" @default.
- W3049157029 title "Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities" @default.
- W3049157029 cites W1750292977 @default.
- W3049157029 cites W1983614167 @default.
- W3049157029 cites W2000031724 @default.
- W3049157029 cites W2020631986 @default.
- W3049157029 cites W2035549557 @default.
- W3049157029 cites W2037236246 @default.
- W3049157029 cites W2057463094 @default.
- W3049157029 cites W2066416082 @default.
- W3049157029 cites W2070689786 @default.
- W3049157029 cites W2091856807 @default.
- W3049157029 cites W2097989534 @default.
- W3049157029 cites W2109255472 @default.
- W3049157029 cites W2113137767 @default.
- W3049157029 cites W2113818227 @default.
- W3049157029 cites W2117539524 @default.
- W3049157029 cites W2121947440 @default.
- W3049157029 cites W2143516773 @default.
- W3049157029 cites W2160166502 @default.
- W3049157029 cites W2295826279 @default.
- W3049157029 cites W2317683878 @default.
- W3049157029 cites W2332022283 @default.
- W3049157029 cites W2560272190 @default.
- W3049157029 cites W2594474574 @default.
- W3049157029 cites W2614780160 @default.
- W3049157029 cites W2616564428 @default.
- W3049157029 cites W2751262706 @default.
- W3049157029 cites W2755255259 @default.
- W3049157029 cites W2770340534 @default.
- W3049157029 cites W2770984369 @default.
- W3049157029 cites W2773589087 @default.
- W3049157029 cites W2804616917 @default.
- W3049157029 cites W2809869465 @default.
- W3049157029 cites W2884276823 @default.
- W3049157029 cites W2885006302 @default.
- W3049157029 cites W2885023560 @default.
- W3049157029 cites W2905144142 @default.
- W3049157029 cites W2909008955 @default.
- W3049157029 cites W2911692648 @default.
- W3049157029 cites W2958223128 @default.
- W3049157029 cites W2963881378 @default.
- W3049157029 cites W2972093541 @default.
- W3049157029 cites W2990438115 @default.
- W3049157029 cites W3006066376 @default.
- W3049157029 cites W3016453764 @default.
- W3049157029 cites W3027542479 @default.
- W3049157029 cites W4239510810 @default.
- W3049157029 doi "https://doi.org/10.3390/rs12162602" @default.
- W3049157029 hasPublicationYear "2020" @default.
- W3049157029 type Work @default.
- W3049157029 sameAs 3049157029 @default.
- W3049157029 citedByCount "54" @default.
- W3049157029 countsByYear W30491570292020 @default.
- W3049157029 countsByYear W30491570292021 @default.
- W3049157029 countsByYear W30491570292022 @default.
- W3049157029 countsByYear W30491570292023 @default.
- W3049157029 crossrefType "journal-article" @default.
- W3049157029 hasAuthorship W3049157029A5028133103 @default.
- W3049157029 hasAuthorship W3049157029A5059153623 @default.
- W3049157029 hasAuthorship W3049157029A5073716619 @default.
- W3049157029 hasBestOaLocation W30491570291 @default.
- W3049157029 hasConcept C108583219 @default.
- W3049157029 hasConcept C119857082 @default.
- W3049157029 hasConcept C122284674 @default.
- W3049157029 hasConcept C124504099 @default.
- W3049157029 hasConcept C132525143 @default.
- W3049157029 hasConcept C153180895 @default.
- W3049157029 hasConcept C154945302 @default.
- W3049157029 hasConcept C166957645 @default.
- W3049157029 hasConcept C169258074 @default.
- W3049157029 hasConcept C205649164 @default.
- W3049157029 hasConcept C41008148 @default.
- W3049157029 hasConcept C53657456 @default.
- W3049157029 hasConcept C62649853 @default.
- W3049157029 hasConcept C80444323 @default.
- W3049157029 hasConcept C81363708 @default.
- W3049157029 hasConcept C89600930 @default.
- W3049157029 hasConcept C95623464 @default.
- W3049157029 hasConceptScore W3049157029C108583219 @default.
- W3049157029 hasConceptScore W3049157029C119857082 @default.
- W3049157029 hasConceptScore W3049157029C122284674 @default.
- W3049157029 hasConceptScore W3049157029C124504099 @default.
- W3049157029 hasConceptScore W3049157029C132525143 @default.
- W3049157029 hasConceptScore W3049157029C153180895 @default.
- W3049157029 hasConceptScore W3049157029C154945302 @default.
- W3049157029 hasConceptScore W3049157029C166957645 @default.
- W3049157029 hasConceptScore W3049157029C169258074 @default.
- W3049157029 hasConceptScore W3049157029C205649164 @default.
- W3049157029 hasConceptScore W3049157029C41008148 @default.
- W3049157029 hasConceptScore W3049157029C53657456 @default.
- W3049157029 hasConceptScore W3049157029C62649853 @default.