Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080453711> ?p ?o ?g. }
- W3080453711 abstract "One of the most significant challenges for signal processing in data-based structural health monitoring (SHM) is a lack of comprehensive data; in particular, recording labels to describe what each of the measured signals represent. For example, consider an offshore wind-turbine, monitored by an SHM strategy. It is infeasible to artificially damage such a high-value asset to collect signals that might relate to the damaged structure in situ; additionally, signals that correspond to abnormal wave-loading, or unusually low-temperatures, could take several years to be recorded. Regular inspections of the turbine in operation, to describe (and label) what measured data represent, would also prove impracticable -- conventionally, it is only possible to check various components (such as the turbine blades) following manual inspection; this involves travelling to a remote, offshore location, which is a high-cost procedure. Therefore, the collection of labelled data is generally limited by some expense incurred when investigating the signals; this might include direct costs, or loss of income due to down-time. Conventionally, incomplete label information forces a dependence on unsupervised machine learning, limiting SHM strategies to damage (i.e. novelty) detection. However, while comprehensive and fully labelled data can be rare, it is often possible to provide labels for a limited subset of data, given a label budget. In this scenario, partially-supervised machine learning should become relevant. The associated algorithms offer an alternative approach to monitor measured data, as they can utilise both labelled and unlabelled signals, within a unifying training scheme. In consequence, this work introduces (and adapts) partially-supervised algorithms for SHM; specifically, semi-supervised and active learning methods. Through applications to experimental data, semi-supervised learning is shown to utilise information in the unlabelled signals, alongside a limited set of labelled data, to further update a predictive-model. On the other hand, active learning improves the predictive performance by querying specific signals to investigate, which are assumed the most informative. Both discriminative and generative methods are investigated, leading towards a novel, probabilistic framework, to classify, investigate, and label signals for online SHM. The findings indicate that, through partially-supervised learning, the cost associated with labelling data can be managed, as the information in a selected subset of labelled signals can be combined with larger sets of unlabelled data -- increasing the potential scope and predictive performance for data-driven SHM." @default.
- W3080453711 created "2020-09-01" @default.
- W3080453711 creator A5076087744 @default.
- W3080453711 date "2019-01-01" @default.
- W3080453711 modified "2023-09-26" @default.
- W3080453711 title "Towards probabilistic and partially-supervised structural health monitoring" @default.
- W3080453711 cites W1479807131 @default.
- W3080453711 cites W1503398984 @default.
- W3080453711 cites W1503705371 @default.
- W3080453711 cites W1514707997 @default.
- W3080453711 cites W1516252796 @default.
- W3080453711 cites W1533660737 @default.
- W3080453711 cites W1551001152 @default.
- W3080453711 cites W1582368210 @default.
- W3080453711 cites W1590183771 @default.
- W3080453711 cites W1608573072 @default.
- W3080453711 cites W18046889 @default.
- W3080453711 cites W1853854734 @default.
- W3080453711 cites W1967687583 @default.
- W3080453711 cites W1968200975 @default.
- W3080453711 cites W1978633512 @default.
- W3080453711 cites W1980262437 @default.
- W3080453711 cites W1981066713 @default.
- W3080453711 cites W2003947476 @default.
- W3080453711 cites W2012878613 @default.
- W3080453711 cites W2013936256 @default.
- W3080453711 cites W2015496143 @default.
- W3080453711 cites W2016534479 @default.
- W3080453711 cites W2017281898 @default.
- W3080453711 cites W2019662599 @default.
- W3080453711 cites W2024296343 @default.
- W3080453711 cites W2024414262 @default.
- W3080453711 cites W2027566931 @default.
- W3080453711 cites W2028489411 @default.
- W3080453711 cites W2035652711 @default.
- W3080453711 cites W2037617469 @default.
- W3080453711 cites W2037866349 @default.
- W3080453711 cites W2039488112 @default.
- W3080453711 cites W2041931527 @default.
- W3080453711 cites W2042932437 @default.
- W3080453711 cites W2045656233 @default.
- W3080453711 cites W2049633694 @default.
- W3080453711 cites W2056081083 @default.
- W3080453711 cites W2056552633 @default.
- W3080453711 cites W2060545271 @default.
- W3080453711 cites W2080972498 @default.
- W3080453711 cites W2082938293 @default.
- W3080453711 cites W2101549186 @default.
- W3080453711 cites W2106822551 @default.
- W3080453711 cites W2107008379 @default.
- W3080453711 cites W2127498532 @default.
- W3080453711 cites W2129249398 @default.
- W3080453711 cites W2136504847 @default.
- W3080453711 cites W2137512539 @default.
- W3080453711 cites W2139578439 @default.
- W3080453711 cites W2147926935 @default.
- W3080453711 cites W2148603752 @default.
- W3080453711 cites W2157826563 @default.
- W3080453711 cites W2160066096 @default.
- W3080453711 cites W2166399999 @default.
- W3080453711 cites W2170569305 @default.
- W3080453711 cites W2277929184 @default.
- W3080453711 cites W2408920689 @default.
- W3080453711 cites W2559561954 @default.
- W3080453711 cites W2616721392 @default.
- W3080453711 cites W2809965223 @default.
- W3080453711 cites W2891166615 @default.
- W3080453711 cites W2892901700 @default.
- W3080453711 cites W2913905997 @default.
- W3080453711 cites W2914331073 @default.
- W3080453711 cites W2921927106 @default.
- W3080453711 cites W2970051320 @default.
- W3080453711 cites W3140968660 @default.
- W3080453711 cites W340244495 @default.
- W3080453711 cites W2124980071 @default.
- W3080453711 hasPublicationYear "2019" @default.
- W3080453711 type Work @default.
- W3080453711 sameAs 3080453711 @default.
- W3080453711 citedByCount "0" @default.
- W3080453711 crossrefType "dissertation" @default.
- W3080453711 hasAuthorship W3080453711A5076087744 @default.
- W3080453711 hasConcept C105795698 @default.
- W3080453711 hasConcept C119857082 @default.
- W3080453711 hasConcept C124101348 @default.
- W3080453711 hasConcept C127413603 @default.
- W3080453711 hasConcept C133462117 @default.
- W3080453711 hasConcept C136389625 @default.
- W3080453711 hasConcept C138885662 @default.
- W3080453711 hasConcept C154945302 @default.
- W3080453711 hasConcept C199360897 @default.
- W3080453711 hasConcept C27206212 @default.
- W3080453711 hasConcept C2776247918 @default.
- W3080453711 hasConcept C2778449969 @default.
- W3080453711 hasConcept C2778738651 @default.
- W3080453711 hasConcept C2778924833 @default.
- W3080453711 hasConcept C2779843651 @default.
- W3080453711 hasConcept C33923547 @default.
- W3080453711 hasConcept C38652104 @default.
- W3080453711 hasConcept C41008148 @default.
- W3080453711 hasConcept C49937458 @default.