Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093669949> ?p ?o ?g. }
- W3093669949 endingPage "1" @default.
- W3093669949 startingPage "1" @default.
- W3093669949 abstract "Super-resolution is a fundamental problem in computer vision which aims to overcome the spatial limitation of camera sensors. While significant progress has been made in single image super-resolution, most algorithms only perform well on synthetic data, which limits their applications in real scenarios. In this paper, we study the problem of real-scene single image super-resolution to bridge the gap between synthetic data and real captured images. We focus on two issues of existing super-resolution algorithms: lack of realistic training data and insufficient utilization of visual information obtained from cameras. To address the first issue, we propose a method to generate more realistic training data by mimicking the imaging process of digital cameras. For the second issue, we develop a two-branch convolutional neural network to exploit the radiance information originally-recorded in raw images. In addition, we propose a dense channel-attention block for better image restoration as well as a learning-based guided filter network for effective color correction. Our model is able to generalize to different cameras without deliberately training on images from specific camera types. Extensive experiments demonstrate that the proposed algorithm can recover fine details and clear structures, and achieve high-quality results for single image super-resolution in real scenes." @default.
- W3093669949 created "2020-10-29" @default.
- W3093669949 creator A5013109703 @default.
- W3093669949 creator A5063179713 @default.
- W3093669949 creator A5063591165 @default.
- W3093669949 creator A5067539739 @default.
- W3093669949 date "2020-01-01" @default.
- W3093669949 modified "2023-10-17" @default.
- W3093669949 title "Exploiting Raw Images for Real-Scene Super-Resolution" @default.
- W3093669949 cites W1885185971 @default.
- W3093669949 cites W1918250297 @default.
- W3093669949 cites W1919542679 @default.
- W3093669949 cites W1973567017 @default.
- W3093669949 cites W1982471090 @default.
- W3093669949 cites W1988739356 @default.
- W3093669949 cites W1993465480 @default.
- W3093669949 cites W2044713151 @default.
- W3093669949 cites W2069051299 @default.
- W3093669949 cites W2097074225 @default.
- W3093669949 cites W2098506229 @default.
- W3093669949 cites W2104600947 @default.
- W3093669949 cites W2104620097 @default.
- W3093669949 cites W2118963448 @default.
- W3093669949 cites W2119302101 @default.
- W3093669949 cites W2121058967 @default.
- W3093669949 cites W2125188192 @default.
- W3093669949 cites W2128254161 @default.
- W3093669949 cites W2129644086 @default.
- W3093669949 cites W2133665775 @default.
- W3093669949 cites W2153388956 @default.
- W3093669949 cites W2163446914 @default.
- W3093669949 cites W2164734076 @default.
- W3093669949 cites W2194775991 @default.
- W3093669949 cites W2214802144 @default.
- W3093669949 cites W2242218935 @default.
- W3093669949 cites W2256362396 @default.
- W3093669949 cites W2319561215 @default.
- W3093669949 cites W2327935541 @default.
- W3093669949 cites W2469102383 @default.
- W3093669949 cites W2476548250 @default.
- W3093669949 cites W2503339013 @default.
- W3093669949 cites W2519481857 @default.
- W3093669949 cites W2552290192 @default.
- W3093669949 cites W2556872594 @default.
- W3093669949 cites W2752782242 @default.
- W3093669949 cites W2756389006 @default.
- W3093669949 cites W2779176852 @default.
- W3093669949 cites W2780544323 @default.
- W3093669949 cites W2780624730 @default.
- W3093669949 cites W2799265886 @default.
- W3093669949 cites W2949695917 @default.
- W3093669949 cites W2952046917 @default.
- W3093669949 cites W2952323569 @default.
- W3093669949 cites W2962754725 @default.
- W3093669949 cites W2962767526 @default.
- W3093669949 cites W2963037581 @default.
- W3093669949 cites W2963200935 @default.
- W3093669949 cites W2963222130 @default.
- W3093669949 cites W2963446712 @default.
- W3093669949 cites W2963470893 @default.
- W3093669949 cites W2963774720 @default.
- W3093669949 cites W2963928582 @default.
- W3093669949 cites W2963955761 @default.
- W3093669949 cites W2963980268 @default.
- W3093669949 cites W2964101377 @default.
- W3093669949 cites W2964277374 @default.
- W3093669949 cites W2983339877 @default.
- W3093669949 cites W2990007814 @default.
- W3093669949 cites W3035302306 @default.
- W3093669949 cites W3103635814 @default.
- W3093669949 cites W384351984 @default.
- W3093669949 cites W54257720 @default.
- W3093669949 doi "https://doi.org/10.1109/tpami.2020.3032476" @default.
- W3093669949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33079657" @default.
- W3093669949 hasPublicationYear "2020" @default.
- W3093669949 type Work @default.
- W3093669949 sameAs 3093669949 @default.
- W3093669949 citedByCount "5" @default.
- W3093669949 countsByYear W30936699492021 @default.
- W3093669949 countsByYear W30936699492022 @default.
- W3093669949 crossrefType "journal-article" @default.
- W3093669949 hasAuthorship W3093669949A5013109703 @default.
- W3093669949 hasAuthorship W3093669949A5063179713 @default.
- W3093669949 hasAuthorship W3093669949A5063591165 @default.
- W3093669949 hasAuthorship W3093669949A5067539739 @default.
- W3093669949 hasBestOaLocation W30936699491 @default.
- W3093669949 hasConcept C111919701 @default.
- W3093669949 hasConcept C120665830 @default.
- W3093669949 hasConcept C121332964 @default.
- W3093669949 hasConcept C127162648 @default.
- W3093669949 hasConcept C154945302 @default.
- W3093669949 hasConcept C165696696 @default.
- W3093669949 hasConcept C192209626 @default.
- W3093669949 hasConcept C205372480 @default.
- W3093669949 hasConcept C2524010 @default.
- W3093669949 hasConcept C2777210771 @default.
- W3093669949 hasConcept C31258907 @default.
- W3093669949 hasConcept C31972630 @default.