Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099559809> ?p ?o ?g. }
- W3099559809 abstract "We experimentally optimize mixing of a turbulent round jet using machine learning control (MLC) following Li et al (2017). The jet is manipulated with one unsteady minijet blowing in wall-normal direction close to the nozzle exit. The flow is monitored with two hotwire sensors. The first sensor is positioned on the centerline 5 jet diameters downstream of the nozzle exit, i.e. the end of the potential core, while the second is located 3 jet diameters downstream and displaced towards the shear-layer. The mixing performance is monitored with mean velocity at the first sensor. A reduction of this velocity correlates with increased entrainment near the potential core. Machine Learning Control (MLC) is employed to optimize sensor feedback, a general open-loop broadband frequency actuation and combinations of both. MLC has identified the optimal periodic forcing with a small duty cycle as the best control policy employing only 400 actuation measurements, each lasting for 5 seconds. This learning rate is comparable if not faster than typical optimization of periodic forcing with two free parameters (frequency and duty cycle). In addition, MLC results indicate that neither new frequencies nor sensor feedback improves mixing further-contrary to many of other turbulence control experiments. The optimality of pure periodic actuation may be attributed to the simple jet flapping mechanism in the minijet plane. The performance of sensor feedback is shown to face a challenge for small duty cycles. The jet mixing results demonstrate the untapped potential of MLC in quickly learning optimal general control policies, even deciding between open- and closed-loop control." @default.
- W3099559809 created "2020-11-23" @default.
- W3099559809 creator A5006878083 @default.
- W3099559809 creator A5033726763 @default.
- W3099559809 creator A5055765788 @default.
- W3099559809 creator A5077376806 @default.
- W3099559809 creator A5089476207 @default.
- W3099559809 date "2018-07-31" @default.
- W3099559809 modified "2023-10-14" @default.
- W3099559809 title "Jet mixing optimization using machine learning control" @default.
- W3099559809 cites W1967591039 @default.
- W3099559809 cites W1986759923 @default.
- W3099559809 cites W1992855327 @default.
- W3099559809 cites W2004315046 @default.
- W3099559809 cites W2004840352 @default.
- W3099559809 cites W2022730962 @default.
- W3099559809 cites W2023430368 @default.
- W3099559809 cites W2023592465 @default.
- W3099559809 cites W2024872780 @default.
- W3099559809 cites W2026443020 @default.
- W3099559809 cites W2027201559 @default.
- W3099559809 cites W2028027052 @default.
- W3099559809 cites W2031132010 @default.
- W3099559809 cites W2032026429 @default.
- W3099559809 cites W2035627364 @default.
- W3099559809 cites W2047983719 @default.
- W3099559809 cites W2050195777 @default.
- W3099559809 cites W2054111098 @default.
- W3099559809 cites W2057221319 @default.
- W3099559809 cites W2065580523 @default.
- W3099559809 cites W2080693911 @default.
- W3099559809 cites W2098110320 @default.
- W3099559809 cites W2102689145 @default.
- W3099559809 cites W2105999135 @default.
- W3099559809 cites W2110118610 @default.
- W3099559809 cites W2115692920 @default.
- W3099559809 cites W2116704199 @default.
- W3099559809 cites W2119301680 @default.
- W3099559809 cites W2134645468 @default.
- W3099559809 cites W2143335728 @default.
- W3099559809 cites W2157764140 @default.
- W3099559809 cites W2160660495 @default.
- W3099559809 cites W2166189982 @default.
- W3099559809 cites W2257722416 @default.
- W3099559809 cites W2396974145 @default.
- W3099559809 cites W2409990436 @default.
- W3099559809 cites W2487609516 @default.
- W3099559809 cites W2521100213 @default.
- W3099559809 cites W2547493130 @default.
- W3099559809 cites W2735755328 @default.
- W3099559809 cites W2765089118 @default.
- W3099559809 cites W2789810054 @default.
- W3099559809 cites W3101909478 @default.
- W3099559809 doi "https://doi.org/10.1007/s00348-018-2582-4" @default.
- W3099559809 hasPublicationYear "2018" @default.
- W3099559809 type Work @default.
- W3099559809 sameAs 3099559809 @default.
- W3099559809 citedByCount "28" @default.
- W3099559809 countsByYear W30995598092019 @default.
- W3099559809 countsByYear W30995598092020 @default.
- W3099559809 countsByYear W30995598092021 @default.
- W3099559809 countsByYear W30995598092022 @default.
- W3099559809 countsByYear W30995598092023 @default.
- W3099559809 crossrefType "journal-article" @default.
- W3099559809 hasAuthorship W3099559809A5006878083 @default.
- W3099559809 hasAuthorship W3099559809A5033726763 @default.
- W3099559809 hasAuthorship W3099559809A5055765788 @default.
- W3099559809 hasAuthorship W3099559809A5077376806 @default.
- W3099559809 hasAuthorship W3099559809A5089476207 @default.
- W3099559809 hasBestOaLocation W30995598092 @default.
- W3099559809 hasConcept C119947313 @default.
- W3099559809 hasConcept C121332964 @default.
- W3099559809 hasConcept C127413603 @default.
- W3099559809 hasConcept C133731056 @default.
- W3099559809 hasConcept C135343436 @default.
- W3099559809 hasConcept C138777275 @default.
- W3099559809 hasConcept C139992725 @default.
- W3099559809 hasConcept C154945302 @default.
- W3099559809 hasConcept C163258240 @default.
- W3099559809 hasConcept C186766456 @default.
- W3099559809 hasConcept C192562407 @default.
- W3099559809 hasConcept C196558001 @default.
- W3099559809 hasConcept C199822604 @default.
- W3099559809 hasConcept C24890656 @default.
- W3099559809 hasConcept C2775924081 @default.
- W3099559809 hasConcept C2780444116 @default.
- W3099559809 hasConcept C3018651601 @default.
- W3099559809 hasConcept C31258907 @default.
- W3099559809 hasConcept C41008148 @default.
- W3099559809 hasConcept C47446073 @default.
- W3099559809 hasConcept C56200935 @default.
- W3099559809 hasConcept C57879066 @default.
- W3099559809 hasConcept C62520636 @default.
- W3099559809 hasConcept C97257150 @default.
- W3099559809 hasConcept C97355855 @default.
- W3099559809 hasConceptScore W3099559809C119947313 @default.
- W3099559809 hasConceptScore W3099559809C121332964 @default.
- W3099559809 hasConceptScore W3099559809C127413603 @default.
- W3099559809 hasConceptScore W3099559809C133731056 @default.
- W3099559809 hasConceptScore W3099559809C135343436 @default.