Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100528900> ?p ?o ?g. }
- W3100528900 endingPage "883" @default.
- W3100528900 startingPage "878" @default.
- W3100528900 abstract "Abstract Background The accurate differentiation between T1a and T1b Barrett’s-related cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an artificial intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer on white-light images. Methods Endoscopic images from three tertiary care centers in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) were evaluated using the AI system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results The sensitivity, specificity, F1 score, and accuracy of the AI system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.74, and 0.71, respectively. There was no statistically significant difference between the performance of the AI system and that of experts, who showed sensitivity, specificity, F1, and accuracy of 0.63, 0.78, 0.67, and 0.70, respectively. Conclusion This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equally to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and real-life settings. Nevertheless, the correct prediction of submucosal invasion in Barrett’s cancer remains challenging for both experts and AI." @default.
- W3100528900 created "2020-11-23" @default.
- W3100528900 creator A5000789863 @default.
- W3100528900 creator A5002682683 @default.
- W3100528900 creator A5003275797 @default.
- W3100528900 creator A5004742830 @default.
- W3100528900 creator A5013995793 @default.
- W3100528900 creator A5027060776 @default.
- W3100528900 creator A5028058092 @default.
- W3100528900 creator A5032100685 @default.
- W3100528900 creator A5034546911 @default.
- W3100528900 creator A5040224868 @default.
- W3100528900 creator A5040795325 @default.
- W3100528900 creator A5041182120 @default.
- W3100528900 creator A5042112344 @default.
- W3100528900 creator A5042860768 @default.
- W3100528900 creator A5044621851 @default.
- W3100528900 creator A5048013654 @default.
- W3100528900 creator A5048181881 @default.
- W3100528900 creator A5062196297 @default.
- W3100528900 creator A5085827064 @default.
- W3100528900 creator A5086818638 @default.
- W3100528900 creator A5087552848 @default.
- W3100528900 date "2020-11-16" @default.
- W3100528900 modified "2023-10-01" @default.
- W3100528900 title "Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of artificial intelligence: a pilot study" @default.
- W3100528900 cites W2002375534 @default.
- W3100528900 cites W2048109095 @default.
- W3100528900 cites W2055695531 @default.
- W3100528900 cites W2092126505 @default.
- W3100528900 cites W2117539524 @default.
- W3100528900 cites W2164777277 @default.
- W3100528900 cites W2185661515 @default.
- W3100528900 cites W2288698772 @default.
- W3100528900 cites W2581415326 @default.
- W3100528900 cites W2737970188 @default.
- W3100528900 cites W2886205008 @default.
- W3100528900 cites W2900992792 @default.
- W3100528900 cites W2903108490 @default.
- W3100528900 cites W2930562923 @default.
- W3100528900 cites W2973355180 @default.
- W3100528900 cites W2989631244 @default.
- W3100528900 cites W2999377002 @default.
- W3100528900 cites W2999411258 @default.
- W3100528900 doi "https://doi.org/10.1055/a-1311-8570" @default.
- W3100528900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33197942" @default.
- W3100528900 hasPublicationYear "2020" @default.
- W3100528900 type Work @default.
- W3100528900 sameAs 3100528900 @default.
- W3100528900 citedByCount "27" @default.
- W3100528900 countsByYear W31005289002021 @default.
- W3100528900 countsByYear W31005289002022 @default.
- W3100528900 countsByYear W31005289002023 @default.
- W3100528900 crossrefType "journal-article" @default.
- W3100528900 hasAuthorship W3100528900A5000789863 @default.
- W3100528900 hasAuthorship W3100528900A5002682683 @default.
- W3100528900 hasAuthorship W3100528900A5003275797 @default.
- W3100528900 hasAuthorship W3100528900A5004742830 @default.
- W3100528900 hasAuthorship W3100528900A5013995793 @default.
- W3100528900 hasAuthorship W3100528900A5027060776 @default.
- W3100528900 hasAuthorship W3100528900A5028058092 @default.
- W3100528900 hasAuthorship W3100528900A5032100685 @default.
- W3100528900 hasAuthorship W3100528900A5034546911 @default.
- W3100528900 hasAuthorship W3100528900A5040224868 @default.
- W3100528900 hasAuthorship W3100528900A5040795325 @default.
- W3100528900 hasAuthorship W3100528900A5041182120 @default.
- W3100528900 hasAuthorship W3100528900A5042112344 @default.
- W3100528900 hasAuthorship W3100528900A5042860768 @default.
- W3100528900 hasAuthorship W3100528900A5044621851 @default.
- W3100528900 hasAuthorship W3100528900A5048013654 @default.
- W3100528900 hasAuthorship W3100528900A5048181881 @default.
- W3100528900 hasAuthorship W3100528900A5062196297 @default.
- W3100528900 hasAuthorship W3100528900A5085827064 @default.
- W3100528900 hasAuthorship W3100528900A5086818638 @default.
- W3100528900 hasAuthorship W3100528900A5087552848 @default.
- W3100528900 hasConcept C108583219 @default.
- W3100528900 hasConcept C121608353 @default.
- W3100528900 hasConcept C126322002 @default.
- W3100528900 hasConcept C126838900 @default.
- W3100528900 hasConcept C154945302 @default.
- W3100528900 hasConcept C41008148 @default.
- W3100528900 hasConcept C71924100 @default.
- W3100528900 hasConceptScore W3100528900C108583219 @default.
- W3100528900 hasConceptScore W3100528900C121608353 @default.
- W3100528900 hasConceptScore W3100528900C126322002 @default.
- W3100528900 hasConceptScore W3100528900C126838900 @default.
- W3100528900 hasConceptScore W3100528900C154945302 @default.
- W3100528900 hasConceptScore W3100528900C41008148 @default.
- W3100528900 hasConceptScore W3100528900C71924100 @default.
- W3100528900 hasIssue "09" @default.
- W3100528900 hasLocation W31005289001 @default.
- W3100528900 hasLocation W31005289002 @default.
- W3100528900 hasOpenAccess W3100528900 @default.
- W3100528900 hasPrimaryLocation W31005289001 @default.
- W3100528900 hasRelatedWork W2126887587 @default.
- W3100528900 hasRelatedWork W2155450227 @default.
- W3100528900 hasRelatedWork W2155887765 @default.
- W3100528900 hasRelatedWork W2731899572 @default.