Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100763318> ?p ?o ?g. }
- W3100763318 endingPage "2203" @default.
- W3100763318 startingPage "2193" @default.
- W3100763318 abstract "In 2019, outbreaks of vaccine-preventable diseases reached the highest number in the US since 1992. Medical misinformation, such as antivaccine content propagating through social media, is associated with increases in vaccine delay and refusal. Our overall goal is to develop an automatic detector for antivaccine messages to counteract the negative impact that antivaccine messages have on the public health. Very few extant detection systems have considered multimodality of social media posts (images, texts, and hashtags), and instead focus on textual components, despite the rapid growth of photo-sharing applications (e.g., Instagram). As a result, existing systems are not sufficient for detecting antivaccine messages with heavy visual components (e.g., images) posted on these newer platforms. To solve this problem, we propose a deep learning network that leverages both visual and textual information. A new semantic- and task-level attention mechanism was created to help our model to focus on the essential contents of a post that signal antivaccine messages. The proposed model, which consists of three branches, can generate comprehensive fused features for predictions. Moreover, an ensemble method is proposed to further improve the final prediction accuracy. To evaluate the proposed model's performance, a real-world social media dataset that consists of more than 30,000 samples was collected from Instagram between January 2016 and October 2019. Our 30 experiment results demonstrate that the final network achieves above 97% testing accuracy and outperforms other relevant models, demonstrating that it can detect a large amount of antivaccine messages posted daily. The implementation code is available at https://github.com/wzhings/antivaccine_detection." @default.
- W3100763318 created "2020-11-23" @default.
- W3100763318 creator A5065634627 @default.
- W3100763318 creator A5065945713 @default.
- W3100763318 creator A5080054465 @default.
- W3100763318 date "2021-06-01" @default.
- W3100763318 modified "2023-10-11" @default.
- W3100763318 title "Detecting Medical Misinformation on Social Media Using Multimodal Deep Learning" @default.
- W3100763318 cites W1678356000 @default.
- W3100763318 cites W1975675278 @default.
- W3100763318 cites W2036510441 @default.
- W3100763318 cites W2039161780 @default.
- W3100763318 cites W2041287014 @default.
- W3100763318 cites W2049846212 @default.
- W3100763318 cites W2062321610 @default.
- W3100763318 cites W2076497246 @default.
- W3100763318 cites W2119056474 @default.
- W3100763318 cites W2183341477 @default.
- W3100763318 cites W2194775991 @default.
- W3100763318 cites W2292070666 @default.
- W3100763318 cites W2470673105 @default.
- W3100763318 cites W2493916176 @default.
- W3100763318 cites W2559785631 @default.
- W3100763318 cites W2561488778 @default.
- W3100763318 cites W2574038793 @default.
- W3100763318 cites W2582248245 @default.
- W3100763318 cites W2610730364 @default.
- W3100763318 cites W2618530766 @default.
- W3100763318 cites W2620789444 @default.
- W3100763318 cites W2740168486 @default.
- W3100763318 cites W2752782242 @default.
- W3100763318 cites W2753122118 @default.
- W3100763318 cites W2756890761 @default.
- W3100763318 cites W2766462585 @default.
- W3100763318 cites W2797527544 @default.
- W3100763318 cites W2809476703 @default.
- W3100763318 cites W2894660299 @default.
- W3100763318 cites W2912305564 @default.
- W3100763318 cites W2913575235 @default.
- W3100763318 cites W2938899257 @default.
- W3100763318 cites W2963446712 @default.
- W3100763318 cites W2963704837 @default.
- W3100763318 cites W2963794428 @default.
- W3100763318 cites W2972944582 @default.
- W3100763318 cites W2977219551 @default.
- W3100763318 cites W2980267532 @default.
- W3100763318 cites W2982137384 @default.
- W3100763318 cites W2997315966 @default.
- W3100763318 cites W3008555361 @default.
- W3100763318 cites W3009899658 @default.
- W3100763318 cites W4239510810 @default.
- W3100763318 doi "https://doi.org/10.1109/jbhi.2020.3037027" @default.
- W3100763318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33170786" @default.
- W3100763318 hasPublicationYear "2021" @default.
- W3100763318 type Work @default.
- W3100763318 sameAs 3100763318 @default.
- W3100763318 citedByCount "27" @default.
- W3100763318 countsByYear W31007633182021 @default.
- W3100763318 countsByYear W31007633182022 @default.
- W3100763318 countsByYear W31007633182023 @default.
- W3100763318 crossrefType "journal-article" @default.
- W3100763318 hasAuthorship W3100763318A5065634627 @default.
- W3100763318 hasAuthorship W3100763318A5065945713 @default.
- W3100763318 hasAuthorship W3100763318A5080054465 @default.
- W3100763318 hasBestOaLocation W31007633181 @default.
- W3100763318 hasConcept C108583219 @default.
- W3100763318 hasConcept C119857082 @default.
- W3100763318 hasConcept C120665830 @default.
- W3100763318 hasConcept C121332964 @default.
- W3100763318 hasConcept C136764020 @default.
- W3100763318 hasConcept C154945302 @default.
- W3100763318 hasConcept C162324750 @default.
- W3100763318 hasConcept C177264268 @default.
- W3100763318 hasConcept C187736073 @default.
- W3100763318 hasConcept C192209626 @default.
- W3100763318 hasConcept C199360897 @default.
- W3100763318 hasConcept C23123220 @default.
- W3100763318 hasConcept C2776760102 @default.
- W3100763318 hasConcept C2776990098 @default.
- W3100763318 hasConcept C2780451532 @default.
- W3100763318 hasConcept C38652104 @default.
- W3100763318 hasConcept C41008148 @default.
- W3100763318 hasConcept C4727928 @default.
- W3100763318 hasConcept C518677369 @default.
- W3100763318 hasConceptScore W3100763318C108583219 @default.
- W3100763318 hasConceptScore W3100763318C119857082 @default.
- W3100763318 hasConceptScore W3100763318C120665830 @default.
- W3100763318 hasConceptScore W3100763318C121332964 @default.
- W3100763318 hasConceptScore W3100763318C136764020 @default.
- W3100763318 hasConceptScore W3100763318C154945302 @default.
- W3100763318 hasConceptScore W3100763318C162324750 @default.
- W3100763318 hasConceptScore W3100763318C177264268 @default.
- W3100763318 hasConceptScore W3100763318C187736073 @default.
- W3100763318 hasConceptScore W3100763318C192209626 @default.
- W3100763318 hasConceptScore W3100763318C199360897 @default.
- W3100763318 hasConceptScore W3100763318C23123220 @default.
- W3100763318 hasConceptScore W3100763318C2776760102 @default.
- W3100763318 hasConceptScore W3100763318C2776990098 @default.