Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104202225> ?p ?o ?g. }
- W3104202225 endingPage "1" @default.
- W3104202225 startingPage "1" @default.
- W3104202225 abstract "This paper focuses on the problem of recursive nonlinear least squares parameter estimation in multi-agent networks, in which the individual agents observe sequentially over time an independent and identically distributed (i.i.d.) time-series consisting of a nonlinear function of the true but unknown parameter corrupted by noise. A distributed recursive estimator of the emph{consensus} + emph{innovations} type, namely $mathcal{CIWNLS}$, is proposed, in which the agents update their parameter estimates at each observation sampling epoch in a collaborative way by simultaneously processing the latest locally sensed information~(emph{innovations}) and the parameter estimates from other agents~(emph{consensus}) in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under rather weak conditions on the connectivity of the inter-agent communication and a emph{global observability} criterion, it is shown that at every network agent, the proposed algorithm leads to consistent parameter estimates. Furthermore, under standard smoothness assumptions on the local observation functions, the distributed estimator is shown to yield order-optimal convergence rates, i.e., as far as the order of pathwise convergence is concerned, the local parameter estimates at each agent are as good as the optimal centralized nonlinear least squares estimator which would require access to all the observations across all the agents at all times. In order to benchmark the performance of the proposed distributed $mathcal{CIWNLS}$ estimator with that of the centralized nonlinear least squares estimator, the asymptotic normality of the estimate sequence is established and the asymptotic covariance of the distributed estimator is evaluated. Finally, simulation results are presented which illustrate and verify the analytical findings." @default.
- W3104202225 created "2020-11-23" @default.
- W3104202225 creator A5006620409 @default.
- W3104202225 creator A5019965945 @default.
- W3104202225 creator A5045861415 @default.
- W3104202225 creator A5077268766 @default.
- W3104202225 date "2016-01-01" @default.
- W3104202225 modified "2023-10-17" @default.
- W3104202225 title "Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics" @default.
- W3104202225 cites W1527034787 @default.
- W3104202225 cites W1643746074 @default.
- W3104202225 cites W1966992934 @default.
- W3104202225 cites W1968172088 @default.
- W3104202225 cites W1987903216 @default.
- W3104202225 cites W1994616650 @default.
- W3104202225 cites W2010552022 @default.
- W3104202225 cites W2021075269 @default.
- W3104202225 cites W2026349745 @default.
- W3104202225 cites W2029080014 @default.
- W3104202225 cites W2040002081 @default.
- W3104202225 cites W2050386482 @default.
- W3104202225 cites W2060337820 @default.
- W3104202225 cites W2065577175 @default.
- W3104202225 cites W2066332749 @default.
- W3104202225 cites W2066623346 @default.
- W3104202225 cites W2077274021 @default.
- W3104202225 cites W2082880083 @default.
- W3104202225 cites W2090408613 @default.
- W3104202225 cites W2108306501 @default.
- W3104202225 cites W2108970807 @default.
- W3104202225 cites W2114557042 @default.
- W3104202225 cites W2114582522 @default.
- W3104202225 cites W2118439011 @default.
- W3104202225 cites W2118776392 @default.
- W3104202225 cites W2121820607 @default.
- W3104202225 cites W2126369594 @default.
- W3104202225 cites W2126428682 @default.
- W3104202225 cites W2127484045 @default.
- W3104202225 cites W2129906637 @default.
- W3104202225 cites W2130758224 @default.
- W3104202225 cites W2145357459 @default.
- W3104202225 cites W2150843948 @default.
- W3104202225 cites W2153344006 @default.
- W3104202225 cites W2153368486 @default.
- W3104202225 cites W2154546286 @default.
- W3104202225 cites W2154834860 @default.
- W3104202225 cites W2156415659 @default.
- W3104202225 cites W2157223339 @default.
- W3104202225 cites W2160643434 @default.
- W3104202225 cites W2165744313 @default.
- W3104202225 cites W2168803043 @default.
- W3104202225 cites W2345718780 @default.
- W3104202225 cites W2553167214 @default.
- W3104202225 cites W2746360986 @default.
- W3104202225 cites W2962755526 @default.
- W3104202225 cites W2963446564 @default.
- W3104202225 cites W2963542571 @default.
- W3104202225 cites W3104550706 @default.
- W3104202225 cites W4237496336 @default.
- W3104202225 cites W4243772471 @default.
- W3104202225 cites W4297584681 @default.
- W3104202225 doi "https://doi.org/10.1109/tsipn.2016.2618318" @default.
- W3104202225 hasPublicationYear "2016" @default.
- W3104202225 type Work @default.
- W3104202225 sameAs 3104202225 @default.
- W3104202225 citedByCount "24" @default.
- W3104202225 countsByYear W31042022252016 @default.
- W3104202225 countsByYear W31042022252018 @default.
- W3104202225 countsByYear W31042022252019 @default.
- W3104202225 countsByYear W31042022252020 @default.
- W3104202225 countsByYear W31042022252021 @default.
- W3104202225 countsByYear W31042022252022 @default.
- W3104202225 countsByYear W31042022252023 @default.
- W3104202225 crossrefType "journal-article" @default.
- W3104202225 hasAuthorship W3104202225A5006620409 @default.
- W3104202225 hasAuthorship W3104202225A5019965945 @default.
- W3104202225 hasAuthorship W3104202225A5045861415 @default.
- W3104202225 hasAuthorship W3104202225A5077268766 @default.
- W3104202225 hasBestOaLocation W31042022251 @default.
- W3104202225 hasConcept C102634674 @default.
- W3104202225 hasConcept C105795698 @default.
- W3104202225 hasConcept C11413529 @default.
- W3104202225 hasConcept C121332964 @default.
- W3104202225 hasConcept C122123141 @default.
- W3104202225 hasConcept C126255220 @default.
- W3104202225 hasConcept C134306372 @default.
- W3104202225 hasConcept C141513077 @default.
- W3104202225 hasConcept C158622935 @default.
- W3104202225 hasConcept C162324750 @default.
- W3104202225 hasConcept C167928553 @default.
- W3104202225 hasConcept C178650346 @default.
- W3104202225 hasConcept C185429906 @default.
- W3104202225 hasConcept C2777303404 @default.
- W3104202225 hasConcept C28826006 @default.
- W3104202225 hasConcept C33923547 @default.
- W3104202225 hasConcept C50522688 @default.
- W3104202225 hasConcept C62520636 @default.
- W3104202225 hasConceptScore W3104202225C102634674 @default.