Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105342231> ?p ?o ?g. }
- W3105342231 endingPage "102262" @default.
- W3105342231 startingPage "102262" @default.
- W3105342231 abstract "Characterizing the spatial variability of the severity of wildfires is important to assess ecological and economic consequences and to coordinate mitigation strategies. Vegetation indices such as the differenced Normalized Burn Ratio (dNBR) have become a standard tool to assess burn or fire severity across larger areas and are being used operationally. Despite the frequent application of dNBR-like vegetation indices, it is not yet fully understood which variables exactly drive the variability in dNBR observed by multispectral satellites. One reason for this is the lack of high quality prefire information about vegetation structure and composition. Consequently, the influence of prefire vegetation composition and other potentially influential variables such as cast shadows has hardly been examined. Here, we use very high resolution Unmanned Aerial System (UAS) orthoimages collected briefly before and after the large wildfires in Central Chile in the fire season 2016/2017 to derive variables related to the pre- and postfire landscape composition and structure. The variables are used as predictors in Generalized Additive Models (GAM) to explain the spatial variability in dNBR and RdNBR pixel values as observed by Sentinel-2. Our models explain more than 80% and 75% of the variability in dNBR and RdNBR values, respectively, using a sparse set of five predictors. The results suggest that in our study area the largest fraction of variability in Sentinel-2 based dNBR and RdNBR values can be explained by variables related to the fraction of consumed canopy cover while the vegetation composition before the fire does not have a large influence on dNBR and RdNBR. Our results further suggest that cast-shadows of snags and standing dead trees with remaining crown structure have a notable influence on the dNBR signal which may have been underestimated so far. We conclude that spatially continuous, very high spatial resolution data from UAS can be a valuable data source for an improved understanding of the exact meaning of common vegetation index products, operationally used for monitoring the environment." @default.
- W3105342231 created "2020-11-23" @default.
- W3105342231 creator A5007461436 @default.
- W3105342231 creator A5013876638 @default.
- W3105342231 creator A5056360657 @default.
- W3105342231 creator A5063873988 @default.
- W3105342231 date "2021-03-01" @default.
- W3105342231 modified "2023-10-12" @default.
- W3105342231 title "Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective" @default.
- W3105342231 cites W1531146290 @default.
- W3105342231 cites W1925216571 @default.
- W3105342231 cites W1967049547 @default.
- W3105342231 cites W1975873570 @default.
- W3105342231 cites W1984209128 @default.
- W3105342231 cites W1984982130 @default.
- W3105342231 cites W1985105194 @default.
- W3105342231 cites W1988126207 @default.
- W3105342231 cites W1990022415 @default.
- W3105342231 cites W1996153525 @default.
- W3105342231 cites W2012478413 @default.
- W3105342231 cites W2016342340 @default.
- W3105342231 cites W2036061791 @default.
- W3105342231 cites W2040403349 @default.
- W3105342231 cites W2063907334 @default.
- W3105342231 cites W2091689518 @default.
- W3105342231 cites W2097039628 @default.
- W3105342231 cites W2100684659 @default.
- W3105342231 cites W2108064960 @default.
- W3105342231 cites W2108767530 @default.
- W3105342231 cites W2111078849 @default.
- W3105342231 cites W2112186536 @default.
- W3105342231 cites W2114386574 @default.
- W3105342231 cites W2115192744 @default.
- W3105342231 cites W2118247391 @default.
- W3105342231 cites W2119160928 @default.
- W3105342231 cites W2127170577 @default.
- W3105342231 cites W2128473925 @default.
- W3105342231 cites W2138137411 @default.
- W3105342231 cites W2144059664 @default.
- W3105342231 cites W2144230836 @default.
- W3105342231 cites W2144606028 @default.
- W3105342231 cites W2166629676 @default.
- W3105342231 cites W2401580071 @default.
- W3105342231 cites W2551906332 @default.
- W3105342231 cites W2562121581 @default.
- W3105342231 cites W2581002780 @default.
- W3105342231 cites W2593972424 @default.
- W3105342231 cites W2753671860 @default.
- W3105342231 cites W2792400295 @default.
- W3105342231 cites W2801837704 @default.
- W3105342231 cites W2804621941 @default.
- W3105342231 cites W2844259849 @default.
- W3105342231 cites W2894219699 @default.
- W3105342231 cites W2913953825 @default.
- W3105342231 cites W2939104056 @default.
- W3105342231 cites W2940655372 @default.
- W3105342231 cites W2987944019 @default.
- W3105342231 cites W3028928772 @default.
- W3105342231 doi "https://doi.org/10.1016/j.jag.2020.102262" @default.
- W3105342231 hasPublicationYear "2021" @default.
- W3105342231 type Work @default.
- W3105342231 sameAs 3105342231 @default.
- W3105342231 citedByCount "16" @default.
- W3105342231 countsByYear W31053422312021 @default.
- W3105342231 countsByYear W31053422312022 @default.
- W3105342231 countsByYear W31053422312023 @default.
- W3105342231 crossrefType "journal-article" @default.
- W3105342231 hasAuthorship W3105342231A5007461436 @default.
- W3105342231 hasAuthorship W3105342231A5013876638 @default.
- W3105342231 hasAuthorship W3105342231A5056360657 @default.
- W3105342231 hasAuthorship W3105342231A5063873988 @default.
- W3105342231 hasBestOaLocation W31053422311 @default.
- W3105342231 hasConcept C100970517 @default.
- W3105342231 hasConcept C142724271 @default.
- W3105342231 hasConcept C173163844 @default.
- W3105342231 hasConcept C18903297 @default.
- W3105342231 hasConcept C205649164 @default.
- W3105342231 hasConcept C2776133958 @default.
- W3105342231 hasConcept C39432304 @default.
- W3105342231 hasConcept C58640448 @default.
- W3105342231 hasConcept C62649853 @default.
- W3105342231 hasConcept C71924100 @default.
- W3105342231 hasConcept C86803240 @default.
- W3105342231 hasConceptScore W3105342231C100970517 @default.
- W3105342231 hasConceptScore W3105342231C142724271 @default.
- W3105342231 hasConceptScore W3105342231C173163844 @default.
- W3105342231 hasConceptScore W3105342231C18903297 @default.
- W3105342231 hasConceptScore W3105342231C205649164 @default.
- W3105342231 hasConceptScore W3105342231C2776133958 @default.
- W3105342231 hasConceptScore W3105342231C39432304 @default.
- W3105342231 hasConceptScore W3105342231C58640448 @default.
- W3105342231 hasConceptScore W3105342231C62649853 @default.
- W3105342231 hasConceptScore W3105342231C71924100 @default.
- W3105342231 hasConceptScore W3105342231C86803240 @default.
- W3105342231 hasLocation W31053422311 @default.
- W3105342231 hasLocation W31053422312 @default.
- W3105342231 hasOpenAccess W3105342231 @default.
- W3105342231 hasPrimaryLocation W31053422311 @default.